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Abstract

Let k, r, n be integers with k ≥ 2, 0 ≤ r ≤ k−1 and n ≥ 10k+3. We
prove that if G is a graph of order n such that the degree sum of any
pair of nonadjacent vertices is at least n−r, then G contains k vertex-
disjoint subgraphs Hi, 1 ≤ i ≤ k, such that V (H1) ∪ . . . ∪ V (Hk) =
V (G) and such that Hi is a cycle or isomorphic to K1 for each i with
1 ≤ i ≤ r, and Hi is a cycle for each i with r + 1 ≤ i ≤ k.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops
and no multiple edges. For a graph G, we denote by V (G) and E(G) the
vertex set and the edge set of G, respectively. For a vertex x of a graph G, the
neighborhood of x in G is denoted by NG(x), and we let dG(x) := |NG(x)|.
For a noncomplete graph G, let σ2(G) :=min{dG(x) + dG(y)| xy /∈ E(G)};
if G is a complete graph, let σ2(G) := ∞. For an integer n ≥ 1, we let
Kn denote the complete graph of order n. In this paper, “disjoint” means
“vertex-disjoint”.

A sufficient condition for the existence of a specified number of disjoint
cycles covering all vertices was given by Brandt et al. in [1]:

Theorem A([1]) Let k, n be integers with n ≥ 4k. Let G be a graph of
order n, and suppose that σ2(G) ≥ n. Then G contains k disjoint cycles Hi,
1 ≤ i ≤ k, such that V (H1) ∪ . . . ∪ V (Hk) = V (G).

In [4], Enomoto and Li showed that if we regard K1 and K2 as cycles,
then the condition on σ2(G) in Theorem A can be weakened:

Theorem B([4]) Let k, n be positive integers with n ≥ k. Let G be a graph
of order n, and suppose that σ2(G) ≥ n− k + 1. Then unless k = 2 and G is
a cycle of length 5, G contains k disjoint subgraphs Hi, 1 ≤ i ≤ k, such that
V (H1) ∪ . . . ∪ V (Hk) = V (G) and such that for each 1 ≤ i ≤ k, Hi is either
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a cycle or isomorphic to K1 or K2.

Also, in [7], Hu and Li showed that if the order of G is sufficiently large,
then we do not need K2 in Theorem B:

Theorem C([7]) Let k, n be positive integers with n ≥ 10k + 3. Let G be
a graph of order n, and suppose that σ2(G) ≥ n − k + 1. Then G contains
k disjoint subgraphs Hi, 1 ≤ i ≤ k, such that V (H1) ∪ . . . ∪ V (Hk) = V (G)
and such that for each 1 ≤ i ≤ k, Hi is either a cycle or isomorphic to K1.

Along a slightly different line, Kawarabayashi [8] proved the following
refinement of Theorem A:

Theorem D([8]) Let k, n be integers with k ≥ 2 and n ≥ 4k. Let G be a
graph of order n, and suppose that σ2(G) ≥ n− 1. Then one of the following
holds:

(i) G contains k disjoint cycles Hi, 1 ≤ i ≤ k, such that V (H1) ∪ . . . ∪
V (Hk) = V (G);

(ii) G has a vertex set S ⊂ V (G) with |V (S)| = n−1
2

such that G − S is
independent; or

(iii) G is isomorphic to the graph obtained from Kn−1 by adding a vertex and
join it to precisely one vertex of Kn−1 (i.e., G ∼= (Kn−2 ∪ K1) + K1).

The purpose of this paper is to ”interpolate” Theorem C and Theorems D
and A by proving the following theorem, which was conjectured by Enomoto
[5]:

Theorem 1 Let k, r, n be integers with 2 ≤ r ≤ k − 2 and n ≥ 7k. Let G
be a graph of order n, and suppose that σ2(G) ≥ n − r. Then G contains k
disjoint subgraphs Hi, 1 ≤ i ≤ k, such that V (H1)∪ . . .∪V (Hk) = V (G) and
such that Hi is a cycle or isomorphic to K1 for each i with 1 ≤ i ≤ r, and
Hi is a cycle for each i with r + 1 ≤ i ≤ k.

Combining Theorems A,C and D and Theorem 1, we obtain the following
corollary:

Corollary 2 Let k, r, n be integers with k ≥ 2, 0 ≤ r ≤ k−1 and n ≥ 10k+3.
Let G be a graph of order n, and suppose that σ2(G) ≥ n−r. Then G contains
k disjoint subgraphs Hi, 1 ≤ i ≤ k, such that V (H1) ∪ . . . ∪ V (Hk) = V (G)
and such that Hi is a cycle or isomorphic to K1 for each i with 1 ≤ i ≤ r,
and Hi is a cycle for each i with r + 1 ≤ i ≤ k.
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Our notation is standard except possibly for the following. Let G be a
graph. For a subset L of V (G), the subgraph induced by L is denoted by 〈L〉.
For a subset M of V (G), we let G−M = 〈V (G)−M〉 and, for a subgraph H
of G, we let G−H = 〈V (G)−V (H)〉. For subsets L and M of V (G), we let
E(L, M) denote the set of edges of G joining a vertex in L and a vertex in
M . A vertex x is often identified with the set {x}. Thus if x ∈ V (G), then
〈x〉 means 〈{x}〉, G − x means G − {x}, and E(x,M) means E({x},M) for
M ⊂ V (G). We say that G is pancyclic if |V (G)| ≥ 3 and G contains a cycle
of length l for each l with 3 ≤ l ≤ |V (G)|. For a cycle C = x1x2 . . . x|V (C)|x1

and for a vertex x = xi ∈ V (C), we define x+j = xi+j and x−j = xi−j (indices
are to be read modulo |V (C)|). Also, we let x+ = x+1, x− = x−1.

We conclude this section by listing known results which we use in the
proof of Theorem 1.

Theorem E([6]) Let n ≥ 3 be an integer. Let G be a 2-connected graph of
order n, and suppose that max{dG(x), dG(y)} ≥ n

2
for any x, y ∈ V (G) such

that x and y are at distance 2 apart. Then G has a hamiltonian cycle.

Theorem F([2]) Let k, d, n be integers with k ≥ 3, d ≥ 4k − 1 and n ≥ 3k.
Let G be a graph of order n, and suppose that σ2(G) ≥ d. Then G contains
k disjoint cycles covering at least min{d, n} vertices of G.

The following theorem, announced in [2], asserts that Theorem F holds
for k = 2 as well.

Theorem G([3]) Let d, n be integers with d ≥ 7 and n ≥ 6. Let G be a
graph of order n, and suppose that σ2(G) ≥ d. Then G contains two disjoint
cycles covering at least min{d, n} vertices of G.

2 Preparation for the proof of Theorem 1

We start with three lemmas related to Theorem E.

Lemma 2.1.Let α ≥ 3 be an integer. Let F be a 2-connected graph of order
α, and suppose that max{dF (x), dF (y)} > α

2
for any x, y ∈ V (F ) with x 
= y

and xy /∈ E(F ). Then F is pancyclic.

Proof. If α = 3 or 4, then the assumption of the Lemma implies that
F ∼= Kα. Thus we may assume α ≥ 5. We first prove that the following
claim.

Claim. There exists x ∈ V (F ) with dF (x) > α
2

such that F − x contains a

3



cycle D of length α − 1 or α − 2.

Proof. By Theorem E, F contains a hamiltonian cycle C. Take x ∈ V (C) =
V (G) with dF (x) > α

2
. If dF (x−) ≤ α

2
and dF (x+) ≤ α

2
, then x−x+ ∈ E(F ),

and hence F −x contains a cycle of length α−1; if dF (x−) > α
2

and dF (x+) >
α
2
, then there exists y ∈ V (C) such that y ∈ NF (x−) and y+ ∈ NF (x+) (it

is possible that y = x+ or y+ = x−), and hence F − x contains a cycle of
length α − 1. Thus we may assume dF (x−) ≤ α

2
and dF (x+) > α

2
. Arguing

similarly with x replaced by x+, we may also assume dF (x+2) ≤ α
2
. But then

x−x+2 ∈ E(F ), and hence F − {x, x+} contains a cycle of length α − 2. �

Returning to the proof of the lemma, let x,D be as in the Claim. If
|V (D)| = α − 2, then |E(x, V (D))| > α

2
− 1 = |V (D)|

2
; if |V (D)| = α − 1,

then |E(x, V (D))| > α
2

> |V (D)|
2

. In either case, |E(x, V (D))| > |V (D)|
2

. Now
let 3 ≤ l ≤ α − 1. Then there exists z ∈ V (D) such that z ∈ NF (x) and
z+(l−2) ∈ NF (x). Thus 〈{x} ∪ {z, z+, . . . , z+(l−2)}〉 contains a cycle of length
l. ��

Lemma 2.2.Let r, α be integers with α ≥ r + 2 ≥ 4. Let F be a graph of
order α, and suppose that F is not 2-connected, and max{dF (x), dF (y)} ≥ α

2

for any x, y ∈ V (F ) with x 
= y and xy /∈ E(F ). Then one of the following
holds:

(1) F contains r disjoint subgraphs A1, . . . , Ar such that V (A1)∪. . .∪V (Ar) =
V (F ) and such that for each 1 ≤ j ≤ r, Aj is either a cycle or isomor-
phic to K1;

(2) r = 2, F is disconnected, and one of the components of F has order 2;
or

(3) r = 2, and there exists e ∈ E(F ) such that one of the components of
F − e has order 2.

Proof. If F is connected, then let B be an endblock of F such that B − c
contains a vertex a with dF (a) ≥ α

2
, where c is the cut vertex of F contained

in B; if F is disconnected, then let B be a component of F such that B
contains a vertex a with dF (a) ≥ α

2
, and take c ∈ V (B). Then |V (B)| ≥

dB(a) + 1 = dF (a) + 1 ≥ α
2

+ 1. Hence for each z ∈ V (F − B), dF (z) ≤
|(V (F − B) ∪ {c}) − {z}| ≤ α

2
− 1. This implies that F − B is a complete

graph, and that
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dB(x) = dF (x) ≥ α
2

> |V (B)|
2

for every x ∈ V (B − c). (2.1)
If |V (F − B)| ≤ r − 1, then by (2.1) and Lemma 2.1, B contains a cycle
C of length α − (r − 1), and hence {C} ∪ {〈v〉| v ∈ V (F − C)} forms a
collection of subgraphs having the properties required in (1). Thus we may
assume |V (F − B)| ≥ r. Then |V (B)| ≥ α

2
+ 1 ≥ |V (F − B)| + 2 ≥ r + 2.

If |V (F − B)| ≥ 3, then F − B contains a cycle C of length |V (F − B)|
and B contains a cycle D of length |V (B)| − (r − 2), and hence {C, D} ∪
{〈v〉| v ∈ V (F − C − D)} forms a collection of subgraphs with the desired
properties. Thus we may assume |V (F − B)| = 2, which forces r = 2. By

(2.1), dB−c(x) ≥ α
2
−1 = |V (B−c)|+1

2
for every x ∈ V (B−c). This in particular

implies that B − c is 2-connected. Hence by Theorem E, B − c contains a
cycle C of length |V (B)| − 1 = α − 3. Now if |E(c, V (F − B))| = 2, then C
and 〈(V (F − B) ∪ {c}〉 satisfy the properties required in (1). Thus we may
assume |E(c, V (F − B))| ≤ 1, which implies that (2) or (3) holds. �

Lemma 2.3. Let r, α be integers with α ≥ r + 2 ≥ 4. Let F be a graph
of order α, and suppose that max{dF (x), dF (y)} > α

2
for any x, y ∈ V (F )

with x 
= y and xy /∈ E(F ). In the case where r = 2, suppose further that
|V (F )| ≤ 6. Then F contains r disjoint subgraphs A1, . . . , Ar such that
V (A1) ∪ . . . ∪ V (Ar) = V (F ) and such that for each 1 ≤ j ≤ r, Aj is either
a cycle or isomorphic to K1.

Proof. If F is 2-connected, then by Lemma 2.1, F contains a cycle C of
length α − (r − 1), and hence {C} ∪ {〈v〉| v ∈ V (F − C)} forms a collection
of desired subgraphs. Thus we may assume F is not 2-connected. In view of
Lemma 2.2, we may also assume that (2) or (3) of Lemma 2.2 holds. Then
r = 2 and, with B and a as in the proof of Lemma 2.2, we have dF (a) > α

2
,

and hence α = |V (F )| = |V (B)| + 2 ≥ (dF (a) + 1) + 2 > α
2

+ 3. This
contradicts the assumption that we have α ≤ 6 when r = 2. �

Throughout the rest of this paper, let n, k, r be as in Theorem 1, and let
G be a counterexample to Theorem 1. Let L = {v ∈ V (G)| dG(v) < n−r

2
}.

Note that xy ∈ E(G) for any x, y ∈ L by the assumption that σ2(G) ≥ n−r.
We first prove the following lemma.

Lemma 2.4. In G, there exist k − r disjoint cycles H1, . . . , Hk−r such that
n − 3r ≤ | ∪k−r

i=1 V (Hi)| ≤ n − r.

Proof. Take v1, . . . , vr ∈ V (G), and let G′ = G − {v1, . . . , vr}. Then
σ2(G

′) ≥ n − 3r. Since k − r ≥ 2 and n − r > n − 3r > 4(k − r), it follows
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from Theorems F and G that G′ contains k − r disjoint cycles H1, . . . , Hk−r

such that | ∪k−r
i=1 V (Hi)| ≥ n − 3r. Since | ∪k−r

i=1 V (Hi)| ≤ |V (G′)| = n − r,
H1, . . . , Hk−r are cycles with the desired properties. �

Let H1, . . . , Hk−r be as in Lemma 2.4. We choose H1, . . . , Hk−r so that

(a) |∪k−r
i=1 V (Hi)| is maximum (subject to the condition that |∪k−r

i=1 V (Hi)| ≤
n − r) and,

subject to condition (a), so that

(b) |(∪k−r
i=1 V (Hi)) ∩ L| is maximum

(we make use of (b) only in the proof of Lemma 2.15).

Let H = 〈∪k−r
i=1 V (Hi)〉 and let α = |V (G−H)|. If α = r, then {H1, . . . , Hk−r}∪

{〈v〉| v ∈ V (G − H)} forms a collection of subgraphs having the properties
required in Theorem 1. Thus we may assume α ≥ r + 1.

We now prove several lemmas which we use in estimating the degree of
various vertices.

Lemma 2.5. Let P = v1v2 . . . vl(l ≥ 1) be a path in G − H and let 1 ≤ i ≤
k − r, and suppose that |V (Hi)| ≥ l + 1. Suppose that NG(v1) ∩ V (Hi) 
= ∅,
and let x ∈ NG(v1) ∩ V (Hi). Then E(vl, {x−l, x+l}) = ∅.

Proof. Suppose not. By symmetry, we may assume vlx
+l ∈ E(G). Then

〈V (Hi) ∪ V (P ) − {x+1, . . . , xl−1}〉 contains a cycle C of length |V (Hi)| + 1.
Hence by replacing Hi by C, we get a contradiction to the maximality of
| ∪k−r

i=1 V (Hi)|. �

Lemma 2.6. Let v ∈ V (G − H), and let 1 ≤ i ≤ k − r. Then the following
hold.

(i) No two vertices in NG(v) ∩ V (Hi) are consecutive on Hi.

(ii) |E(v, V (Hi))| ≤ |V (Hi)|/2.

Proof. Applying Lemma 2.5 with l = 1, we see that (i) holds, and (ii) follows
from (i). �
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Lemma 2.7. Let v ∈ V (G − H). Then |E(v, V (H))| ≤ (n − α)/2.

Proof. By Lemma 2.6(ii), |E(v, V (H))| ≤ ∑k−r
i=1 |V (Hi)|/2 = (n − α)/2. �

Lemma 2.8. Suppose that α = r +1. Let v, v′ ∈ V (G−H) with v 
= v′, and
let 1 ≤ i ≤ k−r. Let a, b ∈ V (Hi) with a 
= b, and suppose that a, b+ ∈ NG(v)
and a+, b ∈ NG(v′). Then {a, a+} ∩ {b, b+} 
= ∅.
Proof. Suppose that {a, a+} ∩ {b, b−} = ∅. Then 〈V (Hi) ∪ {v, v′}〉 contains
disjoint cycles C,D such that V (C)∪V (D) = V (Hi)∪{v, v′}. Since α = r+1,
this means that {H1, . . . , Hi−1, C,D, Hi+1, . . . , Hk−r}∪{〈u〉| u ∈ V (G−H)−
{v, v′}} forms a collection of subgraphs with the desired properties. �

Lemma 2.9. Let vv′ ∈ E(G−H), and let 1 ≤ i ≤ k−r. Then the following
statements hold:

(i) If v is adjacent to a vertex x ∈ V (Hi) and E(v′, {x−, x+}) 
= ∅, then
α = r + 1.

(ii) |E({v, v′}, V (Hi))| ≤ (2|V (Hi)| + 4)/3.

(iii) If NG−H(v)∩NG−H(v′) 
= ∅, then |E({v, v′}, V (Hi))| ≤ (|V (Hi)|+1)/2.

Proof. If vx ∈ E(G), E(v′, {x−, x+}) 
= ∅ and α ≥ r + 2, then 〈V (Hi) ∪
{v, v′}〉 contains a cycle C of length |V (Hi)| + 2 and, by replacing Hi by C,
we get a contradiction to the maximality of | ∪k−r

i=1 V (Hi)|. Thus (i) holds.We
proceed to the proof of (ii) and (iii). If |V (Hi)| = 3, then by Lemma 2.6(ii),
|E({v, v′}, V (Hi))| ≤ 1 + 1 = 2. Thus we assume that |V (Hi)| ≥ 4, and
define f(x) = |E({v, v′}, {x−, x, x+})| for each x ∈ V (Hi) and, if NG−H(v) ∩
NG−H(v′) 
= ∅, then we also define g(x) = |E({v, v′}, {x−, x, x+, x+2})| for
each x ∈ V (Hi).

We first prove (ii). We start with the following claim.

Claim 1. Let z ∈ V (Hi). Then f(z) ≤ 3. Further if equality holds, then
α = r + 1, and one of the following holds:

(1) E(v, {z−, z, z+}) = {vz−, vz+} and E(v′, {z−, z, z+}) = {v′z}; or
(2) E(v, {z−, z, z+}) = {vz} and E(v′, {z−, z, z+}) = {v′z−, v′z+}.
Proof. Supoose that f(z) ≥ 3. Then |E(v, {z−, z, z+})| ≥ 2 or |E(v′, {z−, z,
z+})| ≥ 2. We may assume |E(v, {z−, z, z+})| ≥ 2. Then by Lemma 2.6(i),
E(v, {z−, z, z+}) = {vz−, vz+}. Therefore applying Lemma 2.5 with l = 2,
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we obtain E(v′, {z−, z , z+}) = {v′z}, and hence α = r + 1 by (i). �

Now by way of contradiction, suppose that |E({v, v′}, V (Hi))| > (2|V (Hi

)|+4)/3. Then since |E({v, v′}, V (Hi))| = (
∑

z∈V (Hi)
f(z))/3, it follows from

Claim 1 that α = r + 1, |V (Hi)| ≥ 5, and the number of those vertices z
of Hi for which f(z) = 3 is at least 5. Hence there exist x, y ∈ V (Hi) with
f(x) = f(y) = 3 such that |{x−, x, x+} ∩ {y−, y, y+}| ≤ 1. By the symmetry
of x and y, we may assume {x−, x} ∩ {y−, y, y+} = ∅. By the symmetry of v
and v′, we may assume (1) of Claim 1 holds for x. Now if (1) holds for y, we
get a contradiction by applying Lemma 2.8 with a = x− and b = y; similarly
if (2) holds for y, we get a contradiction by applying Lemma 2.8 with a = x−

and b = y−. Thus (ii) is proved.
To prove (iii), suppose that NG−H(v) ∩ NG−H(v′) 
= ∅.

Claim 2. Let z ∈ V (Hi). Then g(z) ≤ 3. Further if equality holds, then
α = r + 1, and one of the following holds:

(1) E(v, {z−, z, z+, z+2}) = {vz−, vz+} and E(v′, {z−, z, z+, z+2}) = {v′z};
(2) E(v, {z−, z, z+, z+2}) = {vz} and E(v′, {z−, z, z+, z+2}) = {v′z−, v′z+};
(3) E(v, {z−, z, z+, z+2}) = {vz, vz+2} and E(v′, {z−, z, z+, z+2}) = {v′z+};or
(4) E(v, {z−, z, z+, z+2}) = {vz+} and E(v′, {z−, z, z+, z+2}) = {v′z, v′z+2}.

Proof. Suppose that g(z) ≥ 3. Then |E(v, {z−, z, z+, z+2})| ≥ 2 or |E(v′, {z−

, z, z+, z+2})| ≥ 2. We may assume |E(v, {z−, z, z+, z+2})| ≥ 2. Then by
Lemma 2.6(i), E(v, {z−, z, z+, z+2}) = {vz−, vz+2}, {vz−, vz+} or {vz, vz+2}.
If E(v, {z−, z , z+, z+2}) = {vz−, vz+2}, then applying Lemma 2.5 with
l = 2, 3, we get E(v′, {z−, z, z+, z+2}) = ∅, which contradicts the assumption
that g(z) ≥ 3. Thus E(v, {z−, z, z+, z+2 }) = {vz−, vz+} or {vz, vz+2}. We
may assume E(v, {z−, z, z+, z+2}) = {vz−, vz+}. Then applying Lemma 2.5
again with l = 2, 3, we obtain E(v′, {z−, z, z+, z+2} ) = {v′z}, and hence
α = r + 1 by (i). �

Returning to the proof of (iii), suppose that |E({v, v′}, V (Hi))| > (|V (Hi)|
+1)/2. Then since |E({v, v′}, V (Hi))| = (

∑
z∈V (Hi)

g(z))/4, it follows from
Claim 2 that α = r + 1 and the number of those vertices z of Hi for which
g(z) = 3 is at least 3. Take x ∈ V (Hi) with g(x) = 3. By symmetry, we
may assume (1) of Claim 2 holds for x. Then E({v, v′}, x+2) = ∅. Apply-
ing Claim 2 with z = x+, we also see that E({v, v′}, x+3) = ∅. Similarly
applying Claim 2 with z = x−1 and z = x−2, we get E({v, v′}, x−2) = ∅
and E({v, v′}, x−3) = ∅. Hence again by Claim 2, g(z) ≤ 2 for each z ∈
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{x−4, x−3, x−2, x+, x+2, x+3}. Consequently |V (Hi)| ≥ 9 and there exists
y ∈ V (Hi) − {x−4, x−3, x−2, x−, x, x+, x+2, x+3} such that g(y) = 3. Then
{x−, x, x+, x+2} ∩ {y−, y, y+, y+2} = ∅. Therefore we get a contradiction by
applying Lemma 2.8 with a = x− and b = y−, y or y+, which proves (iii).��

Lemma 2.10.Let vv′ ∈ E(G − H). Then the following hold.

(i) |E({v, v′}, V (H))| ≤ (2(n − α) + 4(k − r))/3.

(ii) If NG−H(v) ∩ NG−H(v′) 
= ∅, then |E({v, v′}, V (H))| ≤ ((n − α) + (k −
r))/2.

Proof. By Lemma 2.9(ii), |E({v, v′}, V (H))| ≤ ∑k−r
i=1 (2|V (Hi)| + 4)/3 =

(2(n−α)+4(k−r))/3 and, if NG−H(v)∩NG−H(v) 
= ∅, then by Lemma 2.9(iii),
|E({v, v′}, V (H))| ≤ ∑k−r

i=1 (|V (Hi)| + 1)/2 = ((n − α) + (k − r))/2. �

Lemma 2.11.Let v ∈ V (G−H), and let 1 ≤ i ≤ k− r. Let x ∈ V (Hi), and
suppose that NG(v) ⊃ {x, x+2}. Then dH(x+) ≤ (n − α)/2.

Proof. By the assumption that NG(v) ⊃ {x, x+2}, there exists a cycle C
of length |V (Hi)| in 〈(V (Hi) − {x+}) ∪ {v}〉. Thus arguing similarly as in
the proof of Lemma 2.6, we see from the maximality of | ∪k−r

j=1 V (Hj)| that
|E(x+, V (Hj))| ≤ |Hj|/2 for each j with 1 ≤ j ≤ k − r and j 
= i, and
|E(x+, V (C))| ≤ |V (C)|/2, and hence |E(x+, V (Hi) − {x+})| ≤ |V (C)|/2 =
|V (Hi)|/2. Consequently, dH(x+) ≤ 1

2

∑k−r
j=1 |V (Hj)| = (n − α)/2. �

The following two lemmas are used when we choose an appropriate vertex
in H where degree is to be estimated.

Lemma 2.12.Let v ∈ V (G − H) − L. Suppose that either dG−H(v) ≤ 1
2
α

or α ≤ r + 2. Then for some i with 1 ≤ i ≤ k − r, there exist three
distinct vertices x, y, z ∈ V (Hi) such that NG(v) ⊃ {x, x+2, y, y+2, z, z+2}(it
is possible that {x, y, z} ∩ {x+2, y+2, z+2} 
= ∅).
Proof. Suppose not. Then it follows from Lemma 2.6(i) that for each 1 ≤ i ≤
k − r, we have |E(v, {x, x+, x+2)| ≤ 1 for every vertex x ∈ V (Hi) possibly
except two. Hence |E(v, V (H))| = 1

3

∑k−r
i=1

∑
x∈V (Hi)

|E(v, {x−, x, x+})| ≤
1
3
(n − α) + 2

3
(k − r). Since v /∈ L, this implies n−α

3
+ 2

3
(k − r) + dG−H(v) ≥

dG(v) ≥ n−r
2

, and hence n ≤ 4k − r − 2α + 6dG−H(v). Now if dG−H(v) ≤ α
2
,

then from α ≤ 3r and r ≤ k − 2, we obtain n ≤ 4k − r + α ≤ 4k + 2r < 6k,
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which contradicts the assumption that n ≥ 7k; if α ≤ r + 2, then from
dG−H(v) ≤ |V (G − H)| − 1 = α − 1 and r ≤ k − 2, we obtain n ≤ 4k −
r + 4α − 6 ≤ 4k + 3r + 2 < 7k, which again contradicts the assumption that
n ≥ 7k. �

Lemma 2.13.Let v ∈ V (G − H) − L and v′ ∈ NG−H(v), and suppose that
either dG−H(v) ≤ α

2
or α ≤ r + 2. Then for some i with 1 ≤ i ≤ k − r, there

exists x ∈ V (Hi) such that x, x+2 ∈ NG(v), v, v′ /∈ NG(x+) and |E(x+, V (G−
H))| ≤ α−2

2
.

Proof. Let i, x, y, z be as in Lemma 2.12. Then by Lemma 2.6(ii), |V (Hi)| ≥
6. Suppose that some two of x+, y+ and z+, say x+ and y+, have a common
neighbor u in V (G−H)−{v}. Then 〈V (Hi)∪{v, u}〉 contains a cycle of length
|V (Hi)|+2. In view of the maximality of |∪k−r

i=1 V (Hi)|, this implies α = r+1.
On the other hand, since |V (Hi)| ≥ 6,it follows from Lemma 2.6(i) that we
have {x, x+} ∩ {y+, y+2} = ∅ or {x+, x+2} ∩ {y, y+} = ∅. Consequently
we get a contradiction by applying Lemma 2.8 with a = x and b = y+

or a = y and b = x+. Thus no two of x+, y+ and z+ have a common
neighbor in V (G − H) − {v}. In particular, at most one of x+, y+ and
z+ is adjacent to v′. We may assume x+v′, y+v′ /∈ E(G). We may also
assume |E(x+, V (Hi))| ≤ |E(y+, V (Hi))|. Then since x+v, y+v /∈ E(G) by

Lemma 2.6(i), E(x+, V (G − H)) ≤ |V (G−H−{v,v′})|
2

= α−2
2

. Thus x has the
desired properties. �

Finally we prove two lemmas which we need in considering the case where
V (G − H) ⊂ L.

Lemma 2.14.Suppose that α = r+1 and there exists a triangle T in G−H.
Let 1 ≤ i ≤ k−r with |V (Hi)| ≥ 4, and let x ∈ V (Hi).Then dH(x)+dH(x+) ≤
n − α.

Proof. Suppose that dH(x) + dH(x+) > n − α. Then there exists j such
that |E(x, V (Hj))| + |E(x+, V (Hj))| > |V (Hj)|. Assume for the moment
that j = i. Then there exists y ∈ V (Hi) such that xy, x+y+2 ∈ E(G)
(it is possible that y = x+ or y+2 = x). Since |V (Hi)| ≥ 4, this implies
that 〈V (Hi) − {y+}〉 contains a cycle C of length |V (Hi)| − 1, and hence
{H1, . . . , Hi−1, C, {y+}, Hi+1, . . . , Hk−r, T}∪{〈v〉| v ∈ V (G−H −T )} forms
a collection of subgraphs with the desired properties. Thus we may assume
j 
= i. Then there exists y ∈ V (Hj) such that xy, x+y+3 ∈ E(G). (it is
possible that y = y+3), which implies that 〈V (Hi) ∪ (V (Hj) − {y+, y+2)〉
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contains a cycle C of length |V (Hi)| + |V (Hj)| − 2. Hence replacing Hi and
Hj by C and T , we get a contradiction to the maximality of | ∪k−r

h=1 V (Hh)|.
�

Lemma 2.15.Suppose that V (G − H) ⊂ L, and let 1 ≤ i ≤ k − r.

(i) If z ∈ V (Hi) and E(z, V (G − H)) 
= ∅, then E(z+2, V (G − H)) = ∅.
(ii) There exists x ∈ V (Hi) such that E(x, V (G−H)) = ∅ and E(x+, V (G−

H)) = ∅.
Proof. Suppose that there exists z ∈ V (Hi) such that E(z, V (G − H)) 
= ∅
and E(z+2, V (G − H)) 
= ∅, and take v ∈ NG(z) ∩ V (G − H) and v′ ∈
NG(z+2)∩V (G−H). If v 
= v′, then 〈(V (Hi)∪{v, v′})−{z+}〉 contains a cycle
C of length |V (Hi)|+1, and hence we get a contradiction to the maximality of
|∪k−r

j=1V (Hj)| by replacing Hi by C. Thus v = v′. Then 〈(V (Hi)∪{v}〉−{z+}〉
contains a cycle C of length |V (Hi)|. Since vz+ /∈ E(G) by Lemma 2.6(i) and
since v ∈ L by the assumption of the lemma, z+ /∈ L by the assumption that
σ2(G) ≥ n−r. Consequently, replacing Hi by C, we get a contradiction to the
maximality of |(∪k−r

i=1 V (Hi))∩L|. This proves (i). We now prove (ii). We may
assume E(V (Hi), V (G−H)) 
= ∅. Take y ∈ V (Hi) with E(y, V (G−H)) 
= ∅.
Then E(y+2, V (G − H)) = ∅ by (i). If E(y+, V (G − H)) = ∅, then y+ has
the desired properties. Thus we may assume E(y+, V (G − H)) 
= ∅. Then
E(y+3, V (G−H)) = ∅ by (i)( so |V (Hi)| ≥ 4), and hence y+2 has the desired
properties. �

3 Proof of Theorem 1

We continue with the notation of the preceding section, and complete the
proof of Theorem 1. We divide the proof into two cases.

Case 1: V (G − H) � L

Subcase 1.1. r + 3 ≤ α ≤ 3r.

If dG−H(z) > α/2 for all z ∈ V (G − H) − L, then by Lemma 2.3, G − H
contains r disjoint subgraphs A1, . . . , Ar such that V (A1) ∪ . . . ∪ V (Ar) =
V (G−H) and Aj is either a cycle or isomorphic to K1 for each j (note that
we have |V (G − H)| ≤ 3r = 6 in the case where r = 2), and they together
with H1, . . . , Hk−r yield subgraphs with the desired properties. Thus we
may assume there exists v ∈ V (G − H) − L such that dG−H(v) ≤ α/2. We
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first consider the case where there exists v′ ∈ NG−H(v) such that NG−H(v)∩
NG−H(v′) 
= ∅. By Lemma 2.13, there exists a cycle Hi and there exists
x ∈ V (Hi) such that x, x+2 ∈ NG(v) and v, v′ /∈ NG(x+). Since α ≥ r+3, we
see from the maximality of |∑k−r

j=1 V (Hj)| that NG(x+)∩NG(v)∩V (G−H) =
∅ and NG(x+) ∩ NG(v′) ∩ V (G − H) = ∅, and hence |NG(x+) ∩ V (G −
H)| + |NG(v) ∩ V (G − H)| ≤ α and |NG(x+) ∩ V (G − H)| + |NG(v′) ∩
V (G − H)| ≤ α. Since |NG(x+) ∩ V (H)| ≤ (n − α)/2 by Lemma 2.11 and
|NG(v)∩V (H)|+ |NG(v′)∩V (H)| ≤ ((n−α)+(k−r))/2 by Lemma 2.10(ii),
this implies 2dG(x+)+dG(v)+dG(v′) ≤ 2α+(n−α)+((n−α)+(k−r))/2 =
3n/2+ k/2− r/2+α/2. On the other hand, since v, v′ /∈ NG(x+), 2dG(x+)+
dG(v)+dG(v′) ≥ 2n−2r by the assumption that σ2(G) ≥ n−r. Consequently
2n−2r ≤ 3n/2+k/2−r/2+α/2, which implies n ≤ k+3r+α ≤ k+6r < 7k,
a contradiction. We now consider the case where NG−H(v)∩NG−H(z) = ∅ for
every z ∈ NG−H(v). In this case, we have |NG(v) ∩ (L − V (H))| ≤ 1 by the
fact that 〈L−V (H)〉 is a complete graph. Since dG−H(v) = dG(v)−|NG(v)∩
V (H)| ≥ (n − r)/2 − (n − α)/2 > 1 by Lemma 2.7 and the assumption of
Subcase 1.1, this implies NG−H−L(v) 
= ∅. Take v′ ∈ NG−H−L(v). Since
NG−H(v) ∩ NG−H(v′) = ∅, |NG(v) ∩ V (G − H)| + |NG(v′) ∩ V (G − H)| ≤ α.
Since |NG(v) ∩ V (H)| + |NG(v′) ∩ V (H)| ≤ (2(n − α) + 4(k − r))/3 by
Lemma 2.10(i), this implies dG(v)+dG(v′) ≤ α+(2(n−α)+4(k−r))/3. On
the other hand, we get dG(v) + dG(v′) ≥ n − r from v, v′ /∈ L. Consequently
n−r ≤ 2n/3+4k/3−4r/3+α/3, which implies n ≤ 4k−r+α ≤ 4k+2r < 6k,
a contradiction.

Subcase 1.2. r + 1 ≤ α ≤ r + 2.

Let v ∈ V (G−H)−L. By Lemma 2.7,dG−H (v) = dG(v)−|NG(v)∩V (H)| ≥
n−r

2
− n−α

2
> 0. Take v′ ∈ NG−H(v). By Lemma 2.13, we can find a cycle Hi

for which there exists x ∈ V (Hi) such that x, x+2 ∈ NG(v), v, v′ /∈ NG(x+),
and |NG(x+) ∩ V (G − H)| ≤ α−2

2
. If NG−H(v) ∩ NG−H(v′) 
= ∅, then by

Lemma 2.10(ii) and Lemma 2.11, 2n − 2r ≤ 2dG(x+) + dG(v) + dG(v′) ≤
2(n−α

2
+ α−2

2
)+ (n−α)+(k−r)

2
+2(α−1), which implies n ≤ k+3r+3α−8 ≤ k+

6r−2 < 7k, a contradiction. Thus we may assume NG−H(v)∩NG−H(v′) = ∅.
Then |NG(v)∩V (G−H)|+|NG(v′)∩V (G−H)| ≤ α. Hence by Lemma 2.10(i)
and Lemma 2.11, 2n − 2r ≤ 2dG(x+) + dG(v) + dG(v′) ≤ 2(n−α

2
+ α−2

2
) +

2(n−α)+4(k−r)
3

+ α, which implies n ≤ 4k + 2r + α − 6 ≤ 4k + 3r − 4 < 7k.
This is a contradiction, which completes the discussion for Case 1.

Case 2: V (G − H) ⊂ L

In this case, G − H is a complete graph by the definition of L. If α ≥
r + 2, then G − H contains a cycle C of length α − (r − 1) ≥ 3, and hence
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{H1, . . . , Hk−r , C} ∪ {〈v〉| v ∈ V (G − H − C)} forms a collection of desired
subgraphs of G. Thus we may assume α = r + 1. Since |V (H)| = n −
(r + 1) > 3k, there exists Hi with |V (Hi)| ≥ 4. By Lemma 2.15(ii), there
exists x ∈ V (Hi) such that NG(x) ⊂ V (H) and NG(x+) ⊂ V (H). Take
v, v′ ∈ V (G − H). Note that {v, v′} is contained in a triangle of G − H
because |V (G−H)| = r + 1 ≥ 3. Hence by Lemma 2.10(i) and Lemma 2.14,
2n − 2r ≤ dG(v) + dG(v′) + dG(x) + dG(x+) = (|NG(v) ∩ V (H)| + |NG(v′) ∩
V (H)|) + (|NG(v)∩V (G−H)|+ |NG(v′)∩V (G−H)|) + (|NG(x)∩V (H)|+
|NG(x+)∩V (H)|) ≤ (n−r−1)+(k−r)

2
+2r+(n−r−1). Therefore n ≤ k+4r−3 <

5k, which is a contradiction.
This completes the proof of Theorem 1.
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