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Abstract

Let k,r,n be integers with k > 2,0 < r < k—1and n > 10k+3. We
prove that if G is a graph of order n such that the degree sum of any
pair of nonadjacent vertices is at least n —r, then G contains k vertex-
disjoint subgraphs H;, 1 < i < k, such that V(H;) U... UV (Hg) =
V(@) and such that H; is a cycle or isomorphic to K for each i with
1<4¢<r,and H; is a cycle for each ¢ with r +1 <17 < k.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops
and no multiple edges. For a graph G, we denote by V(G) and E(G) the
vertex set and the edge set of G, respectively. For a vertex x of a graph GG, the
neighborhood of x in G is denoted by Ng(z), and we let dg(z) := |Ng(x)|.
For a noncomplete graph G, let 02(G) :=min{dg(z) + da(y)| zy ¢ E(G)};
if G is a complete graph, let o9(G) := oo. For an integer n > 1, we let
K,, denote the complete graph of order n. In this paper, “disjoint” means
“vertex-disjoint”.

A sufficient condition for the existence of a specified number of disjoint
cycles covering all vertices was given by Brandt et al. in [1]:

Theorem A([l]) Let k,n be integers with n > 4k. Let G be a graph of
order n, and suppose that 0o(G) > n. Then G contains k disjoint cycles H;,
1 <i <k, such that V(Hy)U...UV(Hy) = V(G).

In [4], Enomoto and Li showed that if we regard K; and K as cycles,
then the condition on 09(G) in Theorem A can be weakened:

Theorem B([4]) Let k,n be positive integers with n > k. Let G be a graph
of order n, and suppose that o5(G) > n—k+1. Then unless k =2 and G is
a cycle of length 5, G contains k disjoint subgraphs H;, 1 <1 < k, such that
V(H)) U...UV(Hy) = V(G) and such that for each 1 < i <k, H; is either
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a cycle or isomorphic to K1 or K.

Also, in [7], Hu and Li showed that if the order of G is sufficiently large,
then we do not need K5 in Theorem B:

Theorem C([7]) Let k,n be positive integers with n > 10k + 3. Let G be
a graph of order n, and suppose that oo(G) > n—k+ 1. Then G contains
k disjoint subgraphs H;, 1 < i <k, such that V(H,)U...UV(Hy) = V(G)
and such that for each 1 <1 <k, H; is either a cycle or isomorphic to K.

Along a slightly different line, Kawarabayashi [8] proved the following
refinement of Theorem A:

Theorem D([8]) Let k,n be integers with k > 2 and n > 4k. Let G be a

graph of order n, and suppose that o9(G) > n—1. Then one of the following
holds:

(i) G contains k disjoint cycles H;, 1 < i < k, such that V(H;) U ... U
V(Hi) = V(G);

(ii) G has a verter set S C V(G) with |V(S)| = %2 such that G — S is
independent; or

[\3|

(iii) G s isomorphic to the graph obtained from K,y by adding a vertex and
join it to precisely one vertex of K,y (i.e., G = (K,_2 U K;) + K3).

The purpose of this paper is to ”interpolate” Theorem C and Theorems D

and A by proving the following theorem, which was conjectured by Enomoto
[5]:
Theorem 1 Let k,r,n be integers with 2 <r < k—2 andn > Tk. Let G
be a graph of order n, and suppose that oo(G) > n —r. Then G contains k
disjoint subgraphs H;, 1 < i <k, such that V(H;)U...UV(Hy) = V(G) and
such that H; is a cycle or isomorphic to Ky for each i with 1 < i < r, and
H; is a cycle for each i withr+1 <1 < k.

Combining Theorems A,C and D and Theorem 1, we obtain the following
corollary:

Corollary 2 Let k,r,n be integers withk > 2,0 <r < k—1 andn > 10k+3.
Let G be a graph of order n, and suppose that oo(G) > n—r. Then G contains
k disjoint subgraphs H;, 1 < i <k, such that V(H,)U...UV(Hy) = V(G)
and such that H; is a cycle or isomorphic to Ky for each i with 1 < i < r,
and H; is a cycle for each i withr +1 <1 <k.



Our notation is standard except possibly for the following. Let G be a
graph. For a subset L of V(G), the subgraph induced by L is denoted by (L).
For a subset M of V(G), we let G—M = (V(G)— M) and, for a subgraph H
of G, welet G—H = (V(G)—V(H)). For subsets L and M of V(G), we let
E(L, M) denote the set of edges of G joining a vertex in L and a vertex in
M. A vertex z is often identified with the set {z}. Thus if z € V(G), then
(x) means ({z}), G — x means G — {z}, and E(x, M) means E({z}, M) for
M C V(G). We say that G is pancyclic if |[V(G)| > 3 and G contains a cycle
of length [ for each [ with 3 <1 < |V(G)|. For a cycle C' = z125 ... 2y ()21
and for a vertex x = x; € V(C), we define ™ = z;,; and 277 = x,_; (indices
are to be read modulo |V (C)]). Also, we let 2+ = 2™ 2= =z~

We conclude this section by listing known results which we use in the
proof of Theorem 1.

Theorem E([6]) Let n > 3 be an integer. Let G be a 2-connected graph of
order n, and suppose that mar{dg(x),dq(y)} > 5 for any x,y € V(G) such
that x and y are at distance 2 apart. Then G has a hamiltonian cycle.

Theorem F([2]) Let k,d,n be integers with k > 3,d > 4k — 1 and n > 3k.
Let G be a graph of order n, and suppose that 0o(G) > d. Then G contains
k disjoint cycles covering at least min{d,n} vertices of G.

The following theorem, announced in [2], asserts that Theorem F holds
for k = 2 as well.

Theorem G([3]) Let d,n be integers with d > 7 and n > 6. Let G be a
graph of order n, and suppose that 0o(G) > d. Then G contains two disjoint
cycles covering at least min{d,n} vertices of G.

2 Preparation for the proof of Theorem 1

We start with three lemmas related to Theorem E.

Lemma 2.1. Let a > 3 be an integer. Let F' be a 2-connected graph of order
a, and suppose that maz{dp(x),dr(y)} > 5 for any x,y € V(F) with x # y
and xy ¢ E(F). Then F is pancyclic.

Proof. If a = 3 or 4, then the assumption of the Lemma implies that
F = K,. Thus we may assume a > 5. We first prove that the following
claim.

Claim. There exists € V(F) with dp(x) > § such that F' — 2 contains a
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cycle D of length o — 1 or av — 2.

Proof. By Theorem E, F' contains a hamiltonian cycle C'. Take z € V(C) =
V(G) with dp(z) > §. If dp(2™) < § and dp(2zt) < §, then 272" € E(F),
and hence F'—z contains a cycle of length o —1; if dp(27) > § and dp(z™) >
S, then there exists y € V/(C') such that y € Np(2™) and y* € Np(2™) (it
is possible that y = z™ or y© = 27), and hence F' — x contains a cycle of
length o — 1. Thus we may assume dp(z7) < § and dp(z*) > 5. Arguing
similarly with z replaced by x™, we may also assume dp(z*?) < 5. But then

r~xt? € E(F), and hence F — {x,z"} contains a cycle of length « — 2. O

Returning to the proof of the lemma, let z, D be as in the Claim. If
V(D)| = a — 2, then |E(z,V(D))| > ¢ — 1 = Y2l ¢ v(D)| = a — 1,
then |E(z,V(D))| > § > @. In either case, |E(z,V(D))| > @. Now
let 3 <1 < a—1. Then there exists z € V(D) such that z € Np(x) and
202 € Np(x). Thus ({z}U{z,2%,...,27=2)}) contains a cycle of length

[. o

Lemma 2.2. Let r,« be integers with o > r+ 2 > 4. Let F be a graph of
order a, and suppose that F is not 2-connected, and maz{dr(x),dr(y)} > §
for any x,y € V(F) with x # y and vy ¢ E(F). Then one of the following
holds:

(1) F containsr disjoint subgraphs Ay, ... , A, such that V(A;)U.. .UV (A,) =
V(F) and such that for each 1 < j <r, A; is either a cycle or isomor-
phic to Kq;

(2) r =2, F is disconnected, and one of the components of F' has order 2;
or

(3) 7 = 2, and there exists e € E(F) such that one of the components of
F — e has order 2.

Proof. If F' is connected, then let B be an endblock of F' such that B — ¢
contains a vertex a with dp(a) > §, where c is the cut vertex of F' contained
in B; if F' is disconnected, then let B be a component of F' such that B
contains a vertex a with dp(a) > §, and take ¢ € V(B). Then |V(B)| >
dp(a) +1 = dp(a) +1 > § + 1. Hence for each z € V(F — B), dp(z) <
|(V(F = B)U{c}) = {#z}| £ § — 1. This implies that F' — B is a complete
graph, and that



dp(z) =dp(x) > 5 > @ for every x € V(B — ¢). (2.1)
If |V(F - B)| <r—1, then by (2.1) and Lemma 2.1, B contains a cycle
C of length o — (r — 1), and hence {C} U {{(v)| v € V(F — C)} forms a
collection of subgraphs having the properties required in (1). Thus we may
assume |V (F — B)| > r. Then |V(B)| > §+1>|V(F -B)|[+2>r+2.
If |V(F — B)| > 3, then F' — B contains a cycle C' of length |V(F — B)|
and B contains a cycle D of length |V(B)| — (r — 2), and hence {C, D} U
{(v)] v € V(F — C — D)} forms a collection of subgraphs with the desired
properties. Thus we may assume |V (F — B)| = 2, which forces r = 2. By
(21),dp—c(z) > §—-1= w for every x € V(B —c¢). This in particular
implies that B — ¢ is 2-connected. Hence by Theorem E, B — ¢ contains a
cycle C of length |V(B)| —1=a —3. Now if |[E(c, V(F — B))| =2, then C
and ((V(F — B) U {c}) satisfy the properties required in (1). Thus we may
assume |E(c, V(F — B))| < 1, which implies that (2) or (3) holds. O

Lemma 2.3. Let r,a be integers with o« > r 4+ 2 > 4. Let F' be a graph
of order o, and suppose that maz{dr(x),dr(y)} > § for any x,y € V(F)
with x # y and xy ¢ E(F). In the case where v = 2, suppose further that
\V(F)| < 6. Then F contains r disjoint subgraphs Ai, ..., A, such that
V(A)U...UV(A,) = V(F) and such that for each 1 < j <r, A; is either

a cycle or isomorphic to K.

Proof. If F' is 2-connected, then by Lemma 2.1, F' contains a cycle C' of
length oo — (r — 1), and hence {C'} U {(v)| v € V(F — C)} forms a collection
of desired subgraphs. Thus we may assume F is not 2-connected. In view of
Lemma 2.2, we may also assume that (2) or (3) of Lemma 2.2 holds. Then
r = 2 and, with B and a as in the proof of Lemma 2.2, we have dp(a) > §,
and hence o = |V(F)| = |V(B)| +2 > (dp(a) +1) +2 > § + 3. This
contradicts the assumption that we have o < 6 when r = 2. O

Throughout the rest of this paper, let n, k,r be as in Theorem 1, and let
G be a counterexample to Theorem 1. Let L = {v € V(G)| da(v) < 25}
Note that zy € F(G) for any z,y € L by the assumption that oo(G) > n—r.

We first prove the following lemma.

Lemma 2.4. In G, there exist k — r disjoint cycles Hy, ... , Hy_, such that
n—3r <|UTV(H) <n-—r.

Proof. Take vy,... ,v, € V(G), and let G' = G — {vy,...,v,}. Then
03(G") >n—3r. Since k —r >2and n —r >n —3r > 4(k —r), it follows
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from Theorems F and G that G’ contains k — r disjoint cycles Hy, ... , Hy_,
such that | UF=] V/(H;)| > n — 3r. Since | U7 V(H)| < |[V(G)] = n — 7,
Hy,... 6 Hy_, are cycles with the desired properties. O

Let Hy,...,Hy_, be as in Lemma 2.4. We choose Hy,... ,H_, so that

(a) |UZT'V (H;)| is maximum (subject to the condition that |UF=TV (H;)| <
n —r) and,

subject to condition (a), so that

(b) (UFZ]V(H;)) N L] is maximum
(we make use of (b) only in the proof of Lemma 2.15).
Let H = (UFTV(H;)) and let o = |V(G—H)|. Ifa = r, then {H, ... , H,_,}U
{{(v)] v € V(G — H)} forms a collection of subgraphs having the properties
required in Theorem 1. Thus we may assume a > r + 1.

We now prove several lemmas which we use in estimating the degree of
various vertices.

Lemma 2.5. Let P =vvy...v(l > 1) be a path in G — H and let 1 < i <
k —r, and suppose that |V (H;)| > 1+ 1. Suppose that Ng(vi) NV (H;) # 0,
and let x € Ng(vy) NV (H;). Then E(vy, {x~L zt}) = 0.

Proof. Suppose not. By symmetry, we may assume vzt € E(G). Then
(V(H)UV(P) — {x™ ... 2'71}) contains a cycle C of length |V (H,)| + 1.
Hence by replacing H; by C, we get a contradiction to the maximality of
| UiST V(H;)]- O

Lemma 2.6. Letv € V(G — H), and let 1 <i < k —r. Then the following
hold.

(i) No two vertices in Ng(v) NV (H;) are consecutive on H;.
(i) [E(v, V(H:))| < [V(H:i)l/2.

Proof. Applying Lemma 2.5 with [ = 1, we see that (i) holds, and (ii) follows
from (i). O



Lemma 2.7. Let v € V(G — H). Then |E(v,V(H))| < (n—a«a)/2.
Proof. By Lemma 2.6(ii), |E(v, V(H))| < 217 [V(H)|/2 = (n — a)/2. O

Lemma 2.8. Suppose that « = r+1. Let v,v' € V(G — H) withv # ', and
let1 <i<k—r. Leta,b € V(H;) with a # b, and suppose that a,b™ € Ng(v)
and a*,b € Ng(v'). Then {a,a™} N{b,b*} # 0.

Proof. Suppose that {a,a™} N {b,b~} = (. Then (V(H;) U {v,v'}) contains
disjoint cycles C, D such that V/(C)UV (D) = V(H;)U{v,v'}. Since a = r+1,
this means that {Hy,... ,H;_1,C, D, H; 1, ..., Hy_ . }U{{u)|u € V(G—H)—
{v,v'}} forms a collection of subgraphs with the desired properties. O

Lemma 2.9. Let vv' € E(G—H), and let 1 <i < k—r. Then the following
statements hold:

(i) If v is adjacent to a verter x € V(H;) and E(W',{x~,27}) # 0, then
a=r1+1.

(ii) [E({v,v'}, V(H)))| < 2IV(H:)|+4)/3.
(iii) If No—p(v) N N (') # 0, then |E({v, '}, VH))| < (|V(H)| +1)/2.

Proof. If vz € E(G), E(V,{z~,27}) # 0 and a > r + 2, then (V(H;) U
{v,v'}) contains a cycle C' of length |V (H;)| 4+ 2 and, by replacing H; by C,
we get a contradiction to the maximality of | U¥=" V(H;)|. Thus (i) holds.We
proceed to the proof of (ii) and (iii). If |V (H;)| = 3, then by Lemma 2.6(ii),
|[E({v,v"},V(H;))| < 1+ 1 = 2. Thus we assume that |V (H;)| > 4, and
define f(x) = |E({v,v'},{z~,z,a1})| for each x € V(H;) and, if Ng_g(v) N
Ng_g(v') # 0, then we also define g(z) = |E({v,v'},{z~,x, 2", 2™})| for
each = € V(H;).
We first prove (ii). We start with the following claim.

Claim 1. Let z € V(H;). Then f(z) < 3. Further if equality holds, then
a =1+ 1, and one of the following holds:

(1) E(v,{z7,2,2%}) ={vz",vz"} and E(v',{27,2,27}) = {v'z}; or

(2) E(v,{z7,2,2%}) ={vz} and E(v,{z7,2,2%}) = {v'z7, 02"}

Proof. Supoose that f(z) > 3. Then |E(v,{z7,2,2"})| >2or |[E(, {27, 2,
2t})| > 2. We may assume |E(v,{z7,2,2%})| > 2. Then by Lemma 2.6(i),
E(v,{z7, z,27}) = {vz7,vz"}. Therefore applying Lemma 2.5 with [ = 2,



we obtain E(v',{z7,2 ,2%}) = {v'z}, and hence o = r + 1 by (i). O

Now by way of contradiction, suppose that |E({v,v'}, V(H;))| > (2|V (H;
)| +4)/3. Then since [E({v,v'}, V(H:))| = (X_.cvu,) f(2))/3, it follows from
Claim 1 that o = r + 1, |[V(H;)| > 5, and the number of those vertices z
of H; for which f(z) = 3 is at least 5. Hence there exist x,y € V(H;) with
f(x) = f(y) = 3 such that [{z~,z, 2T} N{y~,y,y"}| < 1. By the symmetry
of x and y, we may assume {x~, 2} N{y~,y,y"} = 0. By the symmetry of v
and v’, we may assume (1) of Claim 1 holds for . Now if (1) holds for y, we
get a contradiction by applying Lemma 2.8 with @ = = and b = y; similarly
if (2) holds for y, we get a contradiction by applying Lemma 2.8 with a = 2~
and b = y~. Thus (ii) is proved.

To prove (iii), suppose that Ng_pg(v) N Ng_pg(v') # 0.

Claim 2. Let z € V(H;). Then g(z) < 3. Further if equality holds, then
a =1+ 1, and one of the following holds:

(1) E(v,{z7, 2,27, 2™2}) = {vz" vz} and BE(v/, {27, 2,27, 272}) = {v'z};
(v,{27,2,2",2"2}) = {vz} and E(v, {27, 2,2%,272}) = {v'27, vz };
(v, {27, 2,27, 272}) = {vz, vz} and E(V/, {27, 2,27, 2%%}) = {v/z };0r
(v,{z7,2,27,27}) = {vz*} and E(V',{27,2,27,27%}) = {v/z,0v/ 272}

(2) E
(3)E
4) E

Proof. Suppose that g(z) > 3. Then |E(v,{z7,2,2%,27})| > 2o0r |[E(W, {2~
2,27 221 > 2. We may assume |E(v,{z7,z,2%,27})| > 2. Then by
Lemma 2.6(i), E(v,{z7, 2,27, 272}) = {vz",vz"?}, {vz", vz} or {vz,vz"2}.
If BE(v,{z7,2z ,27,2™}) = {vz",vz"?}, then applying Lemma 2.5 with
[ =23, weget E(v, {27,227, 27%}) = (), which contradicts the assumption
that g(z) > 3. Thus F(v,{z7,2,27,2"2 }) = {vz",vz"} or {vz,vz"?}. We
may assume F(v, {27, 2,27, 2%?}) = {vz",vz"}. Then applying Lemma 2.5
again with [ = 2,3, we obtain F(v',{z7,2,2%,2"%} ) = {v/z}, and hence
a=r+1by (i). O

Returning to the proof of (iii), suppose that |E({v,v'}, V(H;))| > (|V(H;)|
+1)/2. Then since [E({v,v'}, V(H;))| = (X.cy ) 9(2))/4, it follows from
Claim 2 that o = r + 1 and the number of those vertices z of H; for which
g(z) = 3 is at least 3. Take z € V(H;) with g(z) = 3. By symmetry, we
may assume (1) of Claim 2 holds for z. Then E({v,v'},z7?) = (. Apply-
ing Claim 2 with z = z*, we also see that E({v,v'},z™®) = (. Similarly
applying Claim 2 with 2 = 27! and 2 = 272, we get E({v,v'},272) = 0
and E({v,v'},273) = 0. Hence again by Claim 2, g(z) < 2 for each z €



{x= a3, 272 ot o t? a:+3}. Consequently |V (H;)| > 9 and there exists
y € V(H;) — {x yo 3 o2 o, x, o, 2 23} such that g(y) = 3. Then
{7z, 2", 22y N {y~,y,y", y"2} = (). Therefore we get a contradiction by
applying Lemma 2.8 with a = 2~ and b = y~,y or y*, which proves (iii).00

Lemma 2.10. Let vv' € E(G — H). Then the following hold.
(i) [E({v, o'} VH)] < (2(n —a) +4(k —7))/3.

(i) If ])\)7(/;;{(1)) N Ng_u (') # 0, then |[E({v,v'},V(H))| < (n —a) + (k —
Proof. By Lemma 2.9(ii), |E({v,v'}, V(H))| < V72V (H)| + 4)/3
(2(n—a)+4(k—r))/3 and, if Ng_p(v)NNg_g(v) # 0, then by Lemma 2.9(iii
[E{v, v}, VIH) < SE(VH)] +1)/2= (0 —a) + (k=1))/2.

D\/II

Lemma 2.11.Letv e V(G—H), and let 1 <i < k—r. Letx € V(H;), and
suppose that Ng(v) D {z,2™}. Then dg(x™) < (n —«)/2.

Proof. By the assumption that Ng(v) D {z,2™%}, there exists a cycle C
of length |V (H;)| in ((V(H;) — {«*}) U {v}). Thus arguing similarly as in
the proof of Lemma 2.6, we see from the maximality of | U?;{ V(H;)| that
|E(x*,V(H;))| < |H;|/2 for each j with 1 < j < k —r and j # 4, and
|E(z", VIC)] < [V(C)I/2, and hence |E(z™, V(H;) —{2*})] < [V(C)]/2 =
|V (H;)|/2. Consequently, dy(zF) < 2 Z]: \V(H))| = (n—a)/2. O

The following two lemmas are used when we choose an appropriate vertex
in H where degree is to be estimated.

Lemma 2.12. Let v € V(G — H) — L. Suppose that either dg_p(v) < o
or a < r+ 2. Then for some v with 1 < i < k — r, there exist three
distinct vertices x,y,z € V(H;) such that Ng(v) D {x, 22, y,y"2, 2, 272} (it
is possible that {x,y, 2} N {x 2 y™2 272} £ 0).

Proof. Suppose not. Then it follows from Lemma 2.6(i) that for each 1 <7 <
k —r, we have |E(v, {z,z%, 27| < 1 for every vertex € V(H;) possibly
except two. Hence |E(v,V(H))| = Z Exev y [E(0 {27, 2,27 })] <
s(n—a)+2(k—r). Since v ¢ L, thls 1mphes 2+ 2(k—r)+de-pn(v) >
da(v) > "5° <4k —r—2a+ 6dG_H(U). Now if dg_pg(v) < §,
then from o < 3r and r < k — 2, we obtain n < 4k —r + o < 4k + 2r < 6k,




which contradicts the assumption that n > 7k; if « < r + 2, then from
dg-p(v) < |V(G-—H)|—1=a—-1and r <k — 2, we obtain n < 4k —
r+4a —6 < 4k + 3r + 2 < 7k, which again contradicts the assumption that
n > Tk. O

Lemma 2.13. Let v € V(G — H) — L and v' € Ng_g(v), and suppose that
either dg_p(v) < 5 or a <r+2. Then for some i with 1 <i <k —r, there
exists v € V(H;) such that x, 2 € Ng(v), v,v" & Ng(xT) and |E(zT,V (G —
H))| < 232,

Proof. Let i, z,y, z be as in Lemma 2.12. Then by Lemma 2.6(ii), |V (H;)| >
6. Suppose that some two of 27,y and 27, say 7 and y*, have a common
neighbor u in V(G—H)—{v}. Then (V(H;)U{v, u}) contains a cycle of length
|V (H;)|+2. In view of the maximality of |U¥=7V (H;)|, this implies o = r+1.
On the other hand, since |V (H;)| > 6,it follows from Lemma 2.6(i) that we
have {z,z*} N {y",y™} = 0 or {z*, 27} N {y,y"} = 0. Consequently
we get a contradiction by applying Lemma 2.8 with ¢ = x and b = y*
or a =y and b = z7. Thus no two of z7,y" and z* have a common
neighbor in V(G — H) — {v}. In particular, at most one of x*,y™ and
2zt is adjacent to v'. We may assume xtv' ytv' ¢ E(G). We may also
assume |E(zT,V(H,;))| < |E(y",V(H;))|. Then since z7v,ytv ¢ E(G) by
Lemma 2.6(i), E(z", V(G — H)) < w = 22 Thus = has the
desired properties. O

Finally we prove two lemmas which we need in considering the case where

V(G—H)CL.

Lemma 2.14. Suppose that o« = r+1 and there exists a triangle T in G — H.
Let 1 < i < k—r with |V (H;)| > 4, and let x € V(H;). Then dy(x)+dg(zT) <

n—«o.

Proof. Suppose that dy(x) + dg(z™) > n — . Then there exists j such
that |E(x, V(H;))| + |E(z*,V(H;))| > |V(H;)|. Assume for the moment
that 5 = i. Then there exists y € V(H;) such that zy,2"y™ € E(G)
(it is possible that y = zT or y™ = ). Since |V(H;)| > 4, this implies
that (V(H;) — {y*}) contains a cycle C of length |V (H;)| — 1, and hence
{Hy,...  H_1,C{y"}, Hiya, ... \Hyp, T}U{(v)| v € V(G—H —T)} forms
a collection of subgraphs with the desired properties. Thus we may assume
j # i. Then there exists y € V(H;) such that zy,zTy*® € FE(GQ). (it is
possible that y = y™?), which implies that (V(H;) U (V(H;) — {y*,y*?))
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contains a cycle C' of length |V (H;)| + |V (H;)| — 2. Hence replacing H; and
H; by C and T, we get a contradiction to the maximality of | UFZ% V(H,)).
a

Lemma 2.15. Suppose that V(G — H) C L, and let 1 <i < k —r.
(i) If z€ V(H;) and E(z,V(G — H)) # 0, then E(z"2 V(G — H)) = 0.

(ii) There exists x € V(H;) such that E(x,V(G—H)) =0 and E(z*,V (G —
H))=1.

Proof. Suppose that there exists z € V(H;) such that E(z,V(G — H)) # 0
and E(z™2, V(G — H)) # 0, and take v € Ng(2) N V(G — H) and v’ €
Ng(z™)NV(G—H). Ifv # v/, then ((V(H;)U{v,v'})—{2T}) contains a cycle
C of length |V (H;)|+1, and hence we get a contradiction to the maximality of
\U?;{V(Hj)\ by replacing H; by C. Thus v = v'. Then ((V(H;)U{v})—{z"})
contains a cycle C of length |V (H;)|. Since vzt ¢ E(G) by Lemma 2.6(i) and
since v € L by the assumption of the lemma, z* ¢ L by the assumption that
09(G) > n—r. Consequently, replacing H; by C, we get a contradiction to the
maximality of |(U¥=7V(H;))NL|. This proves (i). We now prove (ii). We may
assume E(V (H;),V(G—H)) # 0. Takey € V(H;) with E(y, V(G —H)) # 0.
Then E(y™, V(G — H)) =0 by (i). If E(y",V(G — H)) = 0, then y* has
the desired properties. Thus we may assume E(y™, V(G — H)) # (. Then
E(y™ V(G—H))=0by (i)( so |V (H;)| > 4), and hence y™ has the desired
properties. O

3 Proof of Theorem 1

We continue with the notation of the preceding section, and complete the
proof of Theorem 1. We divide the proof into two cases.

Case 1: V(G-H)Z L
Subcase 1.1. r+3 < a < 3r.

If de—p(z) > /2 for all z € V(G — H) — L, then by Lemma 2.3, G — H
contains r disjoint subgraphs A, ..., A, such that V(A;) U... UV(A,) =
V(G — H) and A, is either a cycle or isomorphic to K for each j (note that
we have |V(G — H)| < 3r = 6 in the case where r = 2), and they together
with Hy,..., Hy_, yield subgraphs with the desired properties. Thus we
may assume there exists v € V(G — H) — L such that dg_pg(v) < o/2. We

11



first consider the case where there exists v € Ng_p(v) such that Ng_pg(v) N
Ng_g(v') # 0. By Lemma 2.13, there exists a cycle H; and there exists
x € V(H;) such that x, 272 € Ng(v) and v,v" ¢ Ng(z™). Since a > r+ 3, we
see from the maximality of | Z;:I V(H;)| that Ng(z*)NNg(v)NV(G-H) =
0 and Ng(zT) N Ng(v') N V(G — H) = 0, and hence |Ng(zt) N V(G —
H)| + |[Ng(v) N V(G — H)| < a and |[Ng(z") N V(G — H)| + |[Ng(v') N
V(G — H)| < a. Since |[Ng(z")NV(H)| < (n — a)/2 by Lemma 2.11 and
INa(v)NV(H)|+|Ne(v)NV(H)| < ((n—a)+ (k—r))/2 by Lemma 2.10(ii),
this implies 2dg(z7) +dg(v) +dg(v') < 2a+(n—a)+((n—a)+(k—7))/2 =
3n/2+k/2—r/24 «/2. On the other hand, since v,v" ¢ Ng(zT), 2dg(z™) +
de(v)+de(v') > 2n—2r by the assumption that oo(G) > n—r. Consequently
2n—2r < 3n/2+k/2—r/2+«/2, which implies n < k+3r+a < k+6r < 7k,
a contradiction. We now consider the case where Ng_p(v)NNg_pg(z) = 0 for
every z € Ng_pg(v). In this case, we have |[Ng(v) N (L — V(H))| < 1 by the
fact that (L —V (H)) is a complete graph. Since dg_py(v) = dg(v) — |[Ng(v)N
V(H)| > (n-r)/2—(n—a)/2 >1by Lemma 2.7 and the assumption of
Subcase 1.1, this implies Ng_p_r(v) # 0. Take v' € Ng_py_r(v). Since
Ng-n(v) N Ng_g(v') =0, [INc(v) N V(G — H)| 4+ [Na(v)NV(G — H)| < a.
Since |Ng(v) N V(H)| + [Ne(v') N V(H)|] < (2(n — «) + 4(k — r))/3 by
Lemma 2.10(i), this implies dg(v) + de(v') < a+ (2(n—a)+4(k—r))/3. On
the other hand, we get dg(v) + dg(v') > n —r from v,v" ¢ L. Consequently
n—r < 2n/3+44k/3—4r/3+«a/3, which implies n < 4k—r+a < 4k+2r < 6k,
a contradiction.

Subcase 1.2. r+1<a<r+2.

Let v € V(G—H)—L. By Lemma 2.7,d;_p (v) = dg(v) — |[Ng(v)NV(H)| >
not —252% > 0. Take v' € Ng_pg(v). By Lemma 2.13, we can find a cycle H;
for which there exists € V(H;) such that z,2%% € Ng(v), v,v" & Ng(z™T),
and |Ng(zt) NV(G — H)| < %452 If Ne—p(v) N Ng_y(v') # 0, then by
Lemma 2.10(ii) and Lemma 2.11, 2n — 2r < 2dg(z™) 4 dg(v) + dg(v') <
o(n5a 4 az2) y (e thor) 9 1), which implies n < k+3r+3a—8 < k+
6r —2 < 7k, a contradiction. Thus we may assume Ng_g(v) N Ng_g(v') = 0.
Then |Ng(v)NV(G—H)|+|Ng(v )NV (G—H)| < . Hence by Lemma 2.10(i)
and Lemma 2.11, 2n — 2r < 2dg(z%) + dg(v) + de(v') < 2(%52 4+ %52) +
W—i—a, which implies n < 4k +2r + a — 6 < 4k + 3r — 4 < 7k.

This is a contradiction, which completes the discussion for Case 1.

Case 2: V(G—H)CL

In this case, G — H is a complete graph by the definition of L. If a >
r 42, then G — H contains a cycle C of length o« — (r — 1) > 3, and hence
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{Hi,... ,H—,,C}U{{(v)| v e V(G — H — C)} forms a collection of desired
subgraphs of G. Thus we may assume a = r + 1. Since |V(H)| = n —
(r +1) > 3k, there exists H; with |V (H;)| > 4. By Lemma 2.15(ii), there
exists x € V(H;) such that Ng(x) C V(H) and Ng(zt) C V(H). Take
v,v" € V(G — H). Note that {v,v'} is contained in a triangle of G — H
because |V (G — H)| =r+1 > 3. Hence by Lemma 2.10(i) and Lemma 2.14,
2n — 2r S dg(?}) + d(;(’U/) + dg(l’) + dG([E+) = (|NG(U) N V(H)’ + |N(;(U,) N
V() + (Na(o) NV(G — H)| -+ |Na(o)) N V(G — H)]) + (|Nalz) 0V (H)| +
|Ne(z )NV (H)|) < Cr=8ED 4 94 (n—r—1). Therefore n < k+4r—3 <
5k, which is a contradiction.
This completes the proof of Theorem 1.
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