Existence of Two Disjoint Long Cycles in Graphs

Yoshimi Egawa

Department of Mathematical Information Science Science University of Tokyo 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan

Shinya Fujita

Department of Mathematics
Keio University
voshi Kohoku-ku Yokohama 223-8522 J

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan

Ken-ichi Kawarabayashi

Graduate School of Information Sciences(GSIS)

Tohoku University

Aramaki aza Aoba 09, Aoba-ku Sendai, Miyagi, 980-8579, Japan

Hong Wang

Department of Mathematics The University of Idaho Moscow, Idaho 83844, USA

Abstract

Let n, h be integers with $n \ge 6$ and $h \ge 7$. We prove that if G is a graph of order n with $\sigma_2(G) \ge h$, then G contains two disjoint cycles C_1 and C_2 such that $|V(C_1)| + |V(C_2)| \ge \min\{h, n\}$.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges. For a graph G, we denote by V(G) and E(G) the vertex set and the edge set of G, respectively. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_G(x)$, and we let $d_G(x) := |N_G(x)|$. Also let $\delta(G) := \min\{d_G(x) \mid x \in V(G)\}$. For a noncomplete graph G, let $\sigma_2(G) := \min\{d_G(x) + d_G(y) \mid xy \notin E(G)\}$; if G is a complete graph, let $\sigma_2(G) := \infty$. For an integer $n \geq 1$, we let K_n denote the complete graph of order n. In this paper, "disjoint" means "vertex-disjoint".

This paper is concerned with the existence of disjoint cycles. The following theorem was proved by H.Enomoto in [6] and by H.Wang in [9]:

Theorem 1. ([6,9]) Let k be an integer with $k \geq 2$. Let G be a graph of order at least 3k, and suppose that $\sigma_2(G) \geq 4k - 1$. Then G contains k disjoint cycles.

We remark that complete bipartite graphs $K_{2k-1,m}$ with $m \geq 2k-1$ show that in Theorem 1, the condition $\sigma_2(G) \geq 4k-1$ is sharp. On the other hand, the following theorem had been proved by J.-C.Bermond in [1]:

Theorem 2. ([1]) Let n, h be integers with $n \geq 3$ and $h \geq 4$. Let G be a 2-connected graph of order n, and suppose that $\sigma_2(G) \geq h$. Then G contains a cycle C with $|V(C)| \geq \min\{h, n\}$.

In [8], combining Theorems 1 and 2, H.Wang made a conjecture that if k, n, d are integers with $k \geq 2, n \geq 3k$, and $d \geq 2k$, and if G is a graph of order n such that $\delta(G) \geq d$, then G contains k disjoint cycles such that $|V(C_1)| + \ldots + |V(C_k)| \geq \min\{2d, n\}$. As can be seen from complete bipartite graphs $K_{d,m}$ with $m \geq d$, in the conclusion of the conjecture, the lower bound 2d on $|V(C_1)| + \ldots + |V(C_k)|$ is best possible. For k = 2, the conjecture was settled in [8]:

Theorem 3. ([8]) Let n, d be integers with $n \geq 6$ and $d \geq 4$. Let G be a graph of order n, and suppose that $\delta(G) \geq d$. Then G contains two disjoint cycles C_1 and C_2 such that $|V(C_1)| + |V(C_2)| \geq \min\{2d, n\}$.

For $k \geq 3$, the conjecture was settled in [3]; in fact, the following σ_2 -version was proved:

Theorem 4. ([5]) Let k, n, h be integers with $k \geq 3, n \geq 3k$, and $h \geq 4k-1$. Let G be a graph of order n, and suppose that $\sigma_2(G) \geq h$. Then G contains k disjoint cycles C_1, \ldots, C_k such that $|V(C_1)| + \ldots + |V(C_k)| \geq \min\{h, n\}$.

The purpose of this paper is to show that Theorem 4 holds for k = 2 as well; that is to say, we prove the following σ_2 -version of Theorem 4:

Main Theorem. Let n, h be integers with $n \ge 6$ and $h \ge 7$. Let G be a graph of order n, and suppose that $\sigma_2(G) \ge h$. Then G contains two disjoint cycles C_1 and C_2 such that $|V(C_1)| + |V(C_2)| \ge \min\{h, n\}$.

In the proof of the Main Theorem, we make use of the following two results (Lemma 5 is proved in [4]; Lemma 6 is essentially proved in [3], and can also be obtained by applying Theorem 2 to an appropriate endblock of the graph under consideration):

Lemma 5. ([4]) Let $d \geq 3$ be an integer, and let G be a 2-connected graph of order at least 4. Let a, b be distinct vertices of G, and suppose that every vertex in $V(G) - \{a, b\}$, possibly except one, has degree at least d in G. Then G contains a path of length at least d joining a and b.

Lemma 6. ([3]) Let $d \ge 2$ be an integer. Let G be a graph of order at least 3, and suppose that every vertex of G, possibly except one, has degree at least d. Then G contains a cycle C such that $|V(C)| \ge d + 1$.

We add that the case where h = n and h = n - 1 of Theorem 4 had already been considered by S.Brandt et al. in [2] and by K.Kawarabayashi in [7], respectively:

Theorem 7. ([2]) Let k, n be integers with $n \geq 4k - 1$. Let G be a graph of order n, and suppose that $\sigma_2(G) \geq n$. Then G contains k disjoint cycles C_i , $1 \leq i \leq k$, such that $V(C_1) \cup ... \cup V(C_k) = V(G)$.

Theorem 8. ([7]) Let k, n be integers with $k \geq 2$ and $n \geq 4k$. Let G be a graph of order n, and suppose that $\sigma_2(G) \geq n-1$. Then one of the following holds:

- (i) G contains k disjoint cycles C_i , $1 \le i \le k$, such that $V(C_1) \cup ... \cup V(C_k) = V(G)$;
- (ii) G has a vertex set $S \subset V(G)$ with $|S| = \frac{n-1}{2}$ such that G S is independent; or
- (iii) G is isomorphic to the graph obtained from K_{n-1} by adding a vertex and join it to precisely one vertex of K_{n-1} (i.e., G is isomorphic to $(K_{n-2} \cup K_1) + K_1$).

Our notation is standard except possibly for the following. Let G be a graph. For a subset L of V(G), the subgraph induced by L is denoted by $\langle L \rangle$. For a subset M of V(G), we let $G - M = \langle V(G) - M \rangle$. For subsets L and M of V(G) with $L \cap M = \emptyset$, we let E(L, M) denote the set of edges of G joining a vertex in L and a vertex in M. A vertex x is often identified with the set $\{x\}$. Thus if $x \in V(G)$, then G - x means $G - \{x\}$, and E(x, M) means $E(\{x\}, M)$ for $M \subset V(G - x)$. Now let $C = x_1 x_2 \dots x_{|V(C)|} x_1$ be a cycle. For a vertex $x = x_i \in V(C)$, we define $x^{+j} = x_{i+j}$ and $x^{-j} = x_{i-j}$ (indices are to be read modulo |V(C)|). For simplicity, we let $x^+ = x^{+1}, x^- = x^{-1}$. Also, for $x_i, x_j \in V(C)$ with $i \leq j < i + |V(C)|$, we let $C[x_i, x_j]$ denote the path $x_i x_{i+1} x_{i+2} \dots x_j$ (indices are to be read modulo |V(C)|).

2 Proof of the Main Theorem

Let n, h, G be as in the Main Theorem. If n = 6, then the desired conclusion immediately follows from Theorem 1. Thus we may assume $n \geq 7$. Then in view of the desired conclusion, we may also assume $h \leq n$. Thus, consider $n \ge h \ge 7$. Now if n = h or h + 1, then applying Theorem 7 or 8 with k = 2, we see that G contains cycles with the desired properties. Consequently we may further assume $n \geq h + 2$. First assume that G is disconnected. Let H_1, H_2 be two components of G. Then $\delta(H_1) + \delta(H_2) \geq h$. We may assume $\delta(H_1) \geq \delta(H_2)$. If $\delta(H_2) \leq 1$, then $\delta(H_1) \geq h-1 > \lceil h/2 \rceil$ and $|V(H_1)| \geq \delta(H_1) + 1 \geq h$, and hence we obtain the desired conclusion by applying Theorem 3 to H_1 . Thus we may assume $\delta(H_2) \geq 2$. Then by Lemma 6, H_i contains a cycle C_i with $|V(C_i)| \geq \delta(H_i) + 1$ for each $i = 1, 2, \dots$ and C_1 and C_2 are cycles with the desired properties. Next assume that Gis connected but not 2-connected. Let B_1, B_2 be two endblocks of G. For each i = 1, 2, let z_i be the cut vertex of G lying in B_i (it is possible that $z_1 = z_2$) and set $d_i := \min\{d_G(x)|x \in V(B_i - z_i)\}$. Then $d_1 + d_2 \ge h$. We may assume $d_1 \geq d_2$. If $d_2 \leq 1$, then $d_1 \geq h - 1$, $|V(B_1)| \geq d_1 + 1 \geq h$ and $\sigma_2(B_1) \geq d_1 + 2 > h$, and hence we obtain the desired conclusion by applying to B_1 the result for the case where G is 2-connected (note that our proof for the case where G is 2-connected does not depend on the result for the case where G is not 2-connected). Thus we may assume $d_2 \geq 2$. Then by Lemma 6 B_2 contains a cycle C_2 with $|V(C_2)| \geq d_2 + 1$. Note also that $\delta(B_1-z_1) \geq d_1-1 \geq h/2-1 > 2$. Consequently B_1-z_1 contains a cycle $|C_1|$ with $|V(C_1)| \geq d_1$, and $|C_1|$ and $|C_2|$ are cycles with the desired properties.

We henceforth assume that G is 2-connected. Suppose further that G is a counterexample to the Main Theorem. We distinguish two cases: the case where $n \ge h + 3$ and $h \ge 11$, and the case where n = h + 2 or $7 \le h \le 10$.

Case 1: $n \ge h + 3$ and $h \ge 11$

Claim 2.1. $\delta(G) \geq 3$.

Proof. Since G is 2-connected, $\delta(G) \geq 2$. Suppose that there exists a $v \in V(G)$ such that $d_G(v) = 2$. Then by the assumption that $\sigma_2(G) \geq h$, $d_{G-N_G(v)-v}(x) \geq d_G(x)-2 \geq (h-2)-2 \geq h/2$ for each $x \in V(G-N_G(v)-v)$, and we also have $|V(G-N_G(v)-v)| \geq n-3 \geq h$. Hence by Theorem 3, $G-N_G(v)-v$ contains cycles with the required properties, which contradicts the assumption that G is a counterexample. \Box

Let C be a longest cycle in G. Then $|V(C)| \ge h$ by Theorem 2.

Subcase 1.1: |V(C)| = n

Write $C = v_1 v_2 \dots v_n v_1$. Set $d = \lceil (h+1)/2 \rceil$. First we prove two claims.

Claim 2.2. Suppose that $d_G(v_1) \ge d$ and $d_G(v_n) \ge d$, and write $N_{G-E(C)}(v_1) = \{v_{i_1}, \dots, v_{i_p}\} (3 \le i_1 < i_2 < \dots < i_p \le n-1), N_{G-E(C)}(v_n) = \{v_{j_1}, \dots, v_{j_q}\} (2 \le j_1 < j_2 < \dots < j_q \le n-2).$ Further suppose that $i_1 < j_q$. Then $d_G(v_1) = d_G(v_n) = d$ (hence p = q = d-2), and one of the following holds:

- (i) there exists an integer s with $2 \le s \le d-3$ such that $\{i_1, \ldots, i_{d-2}\} = \{3, 4, \ldots, d-s\} \cup \{n-s, n-s+1, \ldots, n-1\}, \{j_1, \ldots, j_{d-2}\} = \{n-s-d+3, n-s-d+4, \ldots, n-s\};$
- (ii) there exists an integer r with $2 \le r \le d-3$ such that $\{j_1, \ldots, j_{d-2}\} = \{2, 3, \ldots, r+1\} \cup \{n-d+r+1, n-d+r+2, \ldots, n-2\}, \{i_1, \ldots, i_{d-2}\} = \{r+1, r+2, \ldots, d+r-2\}; or$
- (iii) $\{i_1, \ldots, i_{d-3}\} = \{3, 4, \ldots, d-1\}, i_{d-2} \in \{n-2, n-1\}, j_1 \in \{2, 3\}, \{j_2, \ldots, j_{d-2}\} = \{n-d+2, n-d+3, \ldots, n-2\}.$

Proof. Note that $p = d_G(v_1) - 2 \ge d - 2$ and $q = d_G(v_n) - 2 \ge d - 2$. Let $I = \{i_1, \ldots, i_p\}, J = \{j_1, \ldots, j_q\}$. Take $k \in I$ and $l \in J$ with k < l so that l - k is as small as possible. Let $L_1 = \{1, 2, \ldots, k\}, L_2 = \{l, l + 1, \ldots, n\}$. Since $C[v_1, v_k]v_1$ and $C[v_l, v_n]v_l$ are disjoint cycles,

$$|L_1| + |L_2| \le h - 1 \tag{1}$$

by the assumption that G is a counterexample. Since $n \ge h + 3$, this implies $l - k \ge 5$.

Note that $I \cup J \subseteq L_1 \cup L_2$ by the minimality of l - k. Let $I_1 = I \cap L_1, I_2 = I \cap L_2, J_1 = J \cap L_1$, and $J_2 = J \cap L_2$. Then

$$|I_1| + |I_2| = p \ge d - 2, |J_1| + |J_2| = q \ge d - 2.$$
 (3)

Note that $k \in I_1$ and $l \in J_2$. For convenience, for a set X of integers and a positive integer t, we let $X^{+t} = \{i+t | i \in X\}$ and $X^{-t} = \{i-t | i \in X\}$, and write X^+ and X^- for X^{+1} and X^{-1} , respectively. By (2),

$$J_1^{-t} \cap I_1 = \emptyset, \ I_2^{+t} \cap J_2 = \emptyset.$$
 (4)

for each t with $1 \le t \le 4$. Note that $n \notin I_2$ and $1 \notin J_1$ by the definition of I and J. Thus applying (4) with t = 1, we get

$$L_1 = I_1 \cup J_1^- \cup (L_1 - I_1 - J_1^-)$$
 (disjoint union), (5)

$$L_2 = I_2^+ \cup J_2 \cup (L_2 - I_2^+ - J_2)$$
 (disjoint union). (6)

Since $|I_1|+|J_1|+|I_2|+|J_2| \ge 2(d-2) \ge h-3$ by (3), it follows from (1),(5),(6) that

$$|L_1 - I_1 - J_1^-| + |L_2 - I_2^+ - J_2| \le 2.$$
 (7)

We here prove three subclaims.

Subclaim 1. The following statements hold:

- (i) Let $i \in I_1$, $j \in J_1$. Then $i \geq j$.
- (ii) Let $i \in I_2$, $j \in J_2$. Then $i \geq j$.

Proof. Suppose that there exist $i \in I_1, j \in J_1$ such that i < j. We may assume that i and j are chosen so that j - i is as small as possible. By (4), $j - i \ge 5$. Since $\{i + 1, i + 2, \ldots, j - 2\} \subseteq L_1 - I_1 - J_1^-$ by the minimality of j - i, this implies $|L_1 - I_1 - J_1^-| \ge 3$, which contradicts (7). Thus (i) is proved, and we can similarly prove (ii).

Subclaim 2. The following statements hold:

- (i) Suppose that $|J_1| \ge 2$ and, in the case where $|J_1| = 2$, suppose further that $|I_1| \ge 2$. Then $I_2 = \emptyset$.
- (ii) Suppose that $|I_2| \geq 2$ and, in the case where $|I_2| = 2$, suppose further that $|J_2| \geq 2$. Then $J_1 = \emptyset$.

Proof. Let

$$l_1 = \min J_1, l_2 = \begin{cases} \max J_1 & (\max J_1 \neq k) \\ \max (J_1 - \{k\}) & (\max J_1 = k). \end{cases}$$

If max $J_1 \neq k$, then by the assumption that $|J_1| \geq 2$, $l_2 = \max J_1 > \min J_1 = l_1$; if max $J_1 = k$, then $I_1 = \{k\}$ by Subclaim 1(i), which implies $|J_1| \geq 3$ by assumption, and hence $l_2 = \max (J_1 - \{k\}) > \min (J_1 - \{k\}) = l_1$. Let $k_1 = \min (I_1 - \{l_2\})$ (recall that $k \in I_1$). Now suppose that $I_2 \neq \emptyset$, and let $k_2 = \max I_2$. If $k_1 \notin J_1$, then we clearly have $\{i \mid l_2 + 1 \leq i \leq k_1 - 1\} \subseteq L_1 - I_1 - J_1^-$; if $k_1 \in J_1$, then $(k_1 = k \text{ and})$ $\{i \mid l_2 \leq i \leq k_1 - 2\} \subseteq L_1 - I_1 - J_1^-$ by Subclaim 1(i). In either case, $|\{i \mid l_2 \leq i \leq k_1 - 1\} \cap (L_1 - I_1 - J_1^-)| \geq k_1 - l_2 - 1$. We also have $\{i \mid 1 \leq i \leq l_1 - 2\} \subseteq L_1 - I_1 - J_1^-$, and $\{i \mid k_2 + 2 \leq i \leq n\} \subseteq L_2 - I_2^+ - J_2$ by Subclaim 1. Consequently $(l_1 - 2) + (k_1 - l_2 - 1) + (n - k_2 - 1) \leq 2$ by (7), and hence

$$k_2 - k_1 + l_2 - l_1 \ge n - 6. (8)$$

On the other hand, $v_1C[v_{k_1}, v_{k_2}]v_1$ and $v_nC[v_{l_1}, v_{l_2}]v_n$ are disjoint cycles. But since $n \geq h+3$, it follows from (8) that $|V(v_1C[v_{k_1}, v_{k_2}]v_1)|+|V(v_nC[v_{l_1}, v_{l_2}]v_n)| = (k_2-k_1+2)+(l_2-l_1+2) \geq n-2 > h$, which contradicts the assumption that G is a counterexample. Thus (i) is proved, and we can similarly prove (ii).

Subclaim 3. (i) If $|J_1| \geq 2$, then $I_2 = \emptyset$. (ii) If $|I_2| \geq 2$, then $J_1 = \emptyset$.

Proof. Suppose that $|J_1| \ge 2$ and $I_2 \ne \emptyset$. Then by Subclaim 2(i), $(|J_1| = 2$ and $|I_1| \le 1$. Since $|I| = p \ge d-2 = \lceil (h+1)/2 \rceil - 2 \ge 4$, this implies $|I_2| \ge 3$,

and hence $J_1 = \emptyset$ by Subclaim 2(ii), which contradicts the assumption that $|J_1| \geq 2$. Thus (i) is proved, and (ii) can be verified in a similar way.

We are now in a position to complete the proof of Claim 2.2. By Subclaim $3, |J_1 \cap \{2,3\}| + |I_2 \cap \{n-2,n-1\}| \le 2$, and hence

$$|J_1^- \cap \{1, 2\}| + |I_2^+ \cap \{n - 1, n\}| \le 2. \tag{9}$$

On the other hand, since $\{1,2\} \cap I = \emptyset$ and $\{n-1,n\} \cap J = \emptyset$ by the definition of I and J, we have $\{1,2\} - J_1^- \subseteq L_1 - I_1 - J_1^-$ and $\{n-1,n\} - I_2^+ \subseteq L_2 - I_2^+ - J_2$, and hence it follows from (7) that

$$|\{1,2\} - J_1^-| + |\{n-1,n\} - I_2^+| \le 2$$
 (10)

Consequently equality holds in (9) and (10). The equality in (10) implies that equality holds in (7) and, in view of (5) and (6), it also implies

$$L_1 - \{1, 2\} \subseteq I_1 \cup J_1^-, L_2 - \{n - 1, n\} \subseteq I_2^+ \cup J_2.$$
 (11)

The equality in (7) together with (1),(3),(5),(6) implies that p = d - 2 and q = d - 2. Now if $J_1^- \supseteq \{1,2\}$, then $I_2^+ = \emptyset$ by Subclaim 3(i), and hence it follows from (11) and Subclaim 1(i) that (ii) of the claim holds. Similarly if $I_2^+ \supseteq \{n-1,n\}$, then (i) holds. Finally if $|J_1^- \cap \{1,2\}| = |I_2^+ \cap \{n-1,n\}| = 1$, then $J_1^- \cap (L_1 - \{1,2\}) = I_2^+ \cap (L_2 - \{n-1,n\}) = \emptyset$ by Subclaim 3, and hence it follows from (11) that (iii) holds. This completes the proof of Claim 2.2.

Claim 2.3. Let $I, J, p, q, i_1, \ldots, i_p, j_1, \ldots, j_q$ be as in Claim 2.2, and suppose that $d_G(v_1) \geq d$, $d_G(v_n) \geq d$ and $i_1 \geq j_q$. Then $\min\{d_G(v_1), d_G(v_n)\} = d$, and one of the following holds:

- (i) $d_G(v_1) = d_G(v_n) = d$, $\{i_1, \dots, i_p\} = \{i_1, i_1 + 1, \dots, i_1 + d 3\}$, and $\{j_1, \dots, j_q\} = \{j_q d + 3, j_q d + 4, \dots, j_q\}$;
- (ii) $i_1 = j_q, d_G(v_1) = d + 1, d_G(v_n) = d, \{i_1, \dots, i_p\} = \{i_1, i_1 + 1, \dots, i_1 + d 2\},$ and $\{j_1, \dots, j_q\} = \{j_q d + 3, j_q d + 4, \dots, j_q\};$
- (iii) $i_1 = i_q, d_G(v_1) = d, d_G(v_n) = d+1, \{i_1, \dots, i_p\} = \{i_1, i_1+1, \dots, i_1+d-3\}, and \{j_1, \dots, j_q\} = \{j_q d+2, j_q d+3, \dots, j_q\};$
- (iv) $i_1 = j_q, d_G(v_1) = d_G(v_n) = d$, there exists an integer r with $i_1 + 1 \le r \le i_1 + d 3$ such that $\{i_1, \ldots, i_p\} = \{i_1, i_1 + 1, \ldots, i_1 + d 2\} \{r\}$, and $\{j_1, \ldots, j_q\} = \{j_q d + 3, j_q d + 4, \ldots, j_q\}$;
- (v) $i_1 = i_q, d_G(v_1) = d_G(v_n) = d, \{i_1, \dots, i_p\} = \{i_1, i_1 + 1, \dots, i_1 + d 3\},$ and there exists an integer s with $j_q - d + 3 \le s \le j_q - 1$ such that $\{j_1, \dots, j_q\} = \{j_q - d + 2, j_q - d + 3, \dots, j_q\} - \{s\};$ or

(vi)
$$i_1 = j_q, d_G(v_1) = d_G(v_n) = d, \{i_1, \dots, i_p\} = \{i_1, i_1 + 2, i_1 + 3, \dots, i_1 + d - 2\},$$
 and $\{j_1, \dots, j_q\} = \{j_q - d + 2, j_q - d + 3, \dots, j_q - 2, j_q\}.$

Proof. As in Claim 2.2, we have

$$p \ge d - 2 \text{ and } q \ge d - 2. \tag{12}$$

We first consider the case where $i_1 \neq j_q$. In this case, note that $v_1C[v_{i_1},v_{i_p}]v_1$ and $v_nC[v_{j_1},v_{j_q}]v_n$ are disjoint cycles, and $|V(v_1C[v_{i_1},v_{i_p}]v_1)|=i_p-i_1+2$ and $|V(v_nC[v_{j_1},v_{j_q}]v_n)|=j_q-j_1+2$. Hence $(i_p-i_1)+(j_q-j_1)+4\leq h-1$ by the assumption that G is a counterexample. Since we clearly have $i_p-i_1\geq p-1$ and $j_q-j_1\geq q-1$, and since $p+q\geq 2(d-2)\geq h-3$ by (12), this forces $p=q=d-2, i_p-i_1=p-1$ and $j_q-j_1=q-1$, and hence (i) holds.

We now consider the case where $i_1 = j_q$. By symmetry, we may assume $i_2 - i_1 \leq j_q - j_{q-1}$. Note that $v_1 C[v_{i_2}, v_{i_p}]v_1$ and $v_n C[v_{j_1}, v_{j_q}]v_n$ are disjoint cycles. Hence

$$(i_p - i_2) + (j_q - j_1) + 4 \le h - 1 \tag{13}$$

On the other hand, we clearly have

$$i_p - i_2 \ge p - 2,\tag{14}$$

$$j_q - j_1 \ge q - 1. \tag{15}$$

Assume for the moment that $i_2 - i_1 \ge 2$. Then $j_q - j_{q-1} \ge 2$, and hence $j_q - j_1 \ge q$. By (14),(12) and (13), this implies p = q = d - 2, $i_p - i_2 = p - 2$ and $j_q - j_1 = q$, and hence $j_q - j_{q-1} = i_2 - i_1 = 2$. Consequently (vi) holds. Thus we may assume $i_2 - i_1 = 1$. If equality holds in both (14) and (15), then by (12) and (13), we have p = q = d - 2, or p = d - 1 and q = d - 2, or p = d - 2 and q = d - 1, and hence (i), (ii) or (iii) holds. Thus we may assume $i_p - i_2 \ge p - 1$ or $j_q - j_1 \ge q$. Then by (14), (15), (12) and (13), p = q = d - 2, and we have $i_p - i_2 = p - 1$ and $j_q - j_1 = q - 1$, or $i_p - i_2 = p - 2$ and $j_q - j_1 = q$. Since $i_2 - i_1 = 1$, this implies that (iv) or (v) holds.

We return to the proof of the Main Theorem. Set $d' = \lfloor (h-1)/2 \rfloor$. Then we have $\delta(G) \leq d'$ by Theorem 3 and the assumption that G is a counterexample. Take a vertex $a \in V(G)$ such that $d_G(a) = \delta(G)$. Since $d_G(a) \leq d'$, there exists a $u \in V(C)$ such that $\{u, u^+\} \cap (N_G(a) \cup \{a\}) = \emptyset$. We may assume $u = v_n$ and $u^+ = v_1$. Since $d_G(a) \leq d'$, we have $\min\{d_G(v_1), d_G(v_n)\} \geq h - d_G(a) \geq h - d' = d$. Hence by Claims 2.2 and 2.3, $\min\{d_G(v_1), d_G(v_n)\} = d$. This implies $\delta(G) = d_G(a) \geq h - d = d'$, and hence

$$\delta(G) = d' \tag{16}$$

(we do not make use of the vertex a in the rest of the discussion for Subcase 1.1). Let $i_1, \ldots, i_p, j_1, \ldots, j_q$ be as in Claims 2.2 and 2.3. Subcase 1.1.1. $i_1 < j_q$

We first consider the case where (i) or (ii) of Claim 2.2 holds. By symmetry, we may assume (i) holds. Let s be as in Claim 2.2 (i). We show that

$$V(C[v_4, v_{n-2}] - v_{d-s}) \cap N_G(v_2) = \emptyset.$$
(17)

Suppose that there exists a $v_k \in V(C[v_4, v_{n-2}] - v_{d-s}) \cap N_G(v_2)$. Set $C' = C[v_2, v_k]v_2$. If $4 \le k \le d-s-1$ or $n-s \le k \le n-2$, C' and $v_1C[v_{k+1}, v_1]$ are disjoint cycles with $|V(C')| + |V(v_1C[v_{k+1}, v_1])| = n > h$; if $d-s+1 \le k \le n-s-d+2$, C' and $v_nC[v_{n-s-d+3}, v_{n-1}]v_1v_n$ are disjoint cycles with $|V(C')| + |V(v_nC[v_{n-s-d+3}, v_{n-1}]v_1v_n)| = (k-1) + (s+d-1) \ge (d-s) + (s+d-1) = 2d-1 \ge h$; if $n-s-d+3 \le k \le n-s-1$, C' and $v_nC[v_{k+1}, v_{n-1}]v_1v_n$ are disjoint cycles with $|V(C')| + |V(v_nC[v_{k+1}, v_{n-1}]v_1v_n)| = n > h$. In any case, we get a contradiction to the assumption that G is a counterexample. Thus (17) is proved. Further if $v_{n-1}, v_n \in N_G(v_2)$, then $v_2v_{n-1}v_nv_2$ and $v_1C[v_3, v_{n-2}]v_1$ are disjoint cycles with $|V(v_2v_{n-1}v_nv_2)| + |V(v_1C[v_3, v_{n-2}]v_1)| = n > h$, a contradiction. Thus

$$|\{v_{n-1}, v_n\} \cap N_G(v_2)| \le 1. \tag{18}$$

Now by (17) and (18), $d_G(v_2) \leq |\{v_{n-1}, v_n\} \cap N_G(v_2)| + |\{v_1, v_3, v_{d-s}\}| \leq 4$. But since $d' = \lfloor (h-1)/2 \rfloor \geq 5$, this contradicts (16).

We now consider the case where Claim 2.2 (iii) holds. We show that

$$V(C[v_4, v_{n-3}] - v_{d-1}) \cap N_G(v_2) = \emptyset.$$
(19)

Suppose that there exists a $v_k \in V(C[v_4, v_{n-3}] - v_{d-1}) \cap N_G(v_2)$. Set $C' = C[v_2, v_k]v_2$. If $4 \le k \le d-2$, C' and $v_1C[v_{k+1}, v_1]$ are disjoint cycles with $|V(C')| + |V(v_1C[v_{k+1}, v_1])| = n > h$; if $d \le k \le n-d+1$, $v_1C[v_3, v_k]v_2v_1$ and $v_nC[v_{n-d+2}, v_n]$ are disjoint cycles with $|V(v_1C[v_3, v_k]v_2v_1)| + |V(v_nC[v_{n-d+2}, v_n])| \ge k+d-1 \ge 2d-1 \ge h$; if $n-d+2 \le k \le n-3$, C' and $v_nC[v_{k+1}, v_n]$ are disjoint cycles with $|V(C')| + |V(v_nC[v_{k+1}, v_n])| = n-1 > h$. In any case, we get a contradiction. Thus (19) is proved. Further we show that

$$|\{v_{d-1}, v_{n-2}, v_{n-1}\} \cap N_G(v_2)| \le 1.$$
(20)

Suppose that $|\{v_{d-1}, v_{n-2}, v_{n-1}\} \cap N_G(v_2)| \geq 2$. If $v_{n-2}, v_{n-1} \in N_G(v_2)$, $v_2v_{n-2}v_{n-1}v_2$ and $v_1C[v_3, v_{n-3}]v_nv_1$ are disjoint cycles with $|V(v_2v_{n-2}v_{n-1}v_2)| + |V(v_1C[v_3, v_{n-3}]v_nv_1)| = n > h$, a contradiction. Thus we have $v_{d-1} \in N_G(v_2)$ and $|\{v_{n-2}, v_{n-1}\} \cap N_G(v_2)| = 1$. Write $\{v_{n-2}, v_{n-1}\} \cap N_G(v_2) = \{v_m\}$. Then since $d = \lceil (h+1)/2 \rceil \geq 6$, $v_2C[v_{d-1}, v_m]v_2$ and $v_1C[v_3, v_{d-2}]v_1$ are disjoint cycles with $|V(v_2C[v_{d-1}, v_m]v_2)| + |V(v_1C[v_3, v_{d-2}]v_1)| \geq n-2 > h$, a contradiction. Thus (20) is proved. Now by (19) and (20), $d_G(v_2) \leq |\{v_{d-1}, v_{n-2}, v_{n-1}\} \cap N_G(v_2)| + |\{v_1, v_3, v_n\}| \leq 4$, which contradicts (16).

Subcase 1.1.2. $i_1 \geq j_q$

We first consider the case where $j_1 \geq 3$. We show that

$$V(C[v_4, v_{n-1}] - v_{i_p}) \cap N_G(v_2) = \emptyset.$$
(21)

Suppose that there exists a $v_k \in V(C[v_4, v_{n-1}] - v_{i_p}) \cap N_G(v_2)$. Set $C' = C[v_2, v_k]v_2$. If $4 \le k \le j_1 - 1$, C' and $v_n C[v_{j_1}, v_n]$ are disjoint cycles with $|V(C')| + |V(v_n C[v_{j_1}, v_n])| \ge 3 + ((p+q-1)+1) \ge 2d-1 \ge h$, a contradiction; if $j_q \le k \le i_1 - 1$, then since $j_1 \ge 3$, $v_2 C[v_k, v_{i_p}]v_1v_2$ and $v_n C[v_{j_1}, v_{j_{q-1}}]v_n$ are disjoint cycles with $|V(v_2 C[v_k, v_{i_p}]v_1v_2)| + |V(v_n C[v_{j_1}, v_{j_{q-1}}]v_n)| \ge (p+3)+q \ge 1$

h, a contradiction; if $i_p+1 \leq k \leq n-1$, then since $j_1 \geq 3$, $v_1C[v_{i_1}, v_k]v_2v_1$ and $v_nC[v_{j_1}, v_{j_{q-1}}]v_n$ are disjoint cycles with $|V(v_1C[v_{i_1}, v_k]v_2v_1)|+|V(v_nC[v_{j_1}, v_{j_{q-1}}]v_n)| \geq (p+3)+q \geq h$, a contradiction. Thus we have $j_1 \leq k \leq j_q-1$ or $i_1 \leq k \leq i_p-1$. First assume $j_1 \leq k \leq j_q-1$. Then by Claim 2.3, $\{v_k, v_{k+1}\} \cap N_G(v_n) \neq \emptyset$. Take $v_l \in \{v_{k+1}, v_{k+2}\} \cap N_G(v_n)$. Then C' and $v_nC[v_l, v_n]$ are disjoint cycles with $|V(C')|+|V(v_nC[v_l, v_n])| \geq n-2 > h$, a contradiction. Next assume $i_1 \leq k \leq i_p-1$. Then by Claim 2.3, $\{v_{k+1}, v_{k+2}\} \cap N_G(v_1) \neq \emptyset$. Take $v_m \in \{v_{k+1}, v_{k+2}\} \cap N_G(v_1)$. Then C' and $v_1C[v_m, v_1]$ are disjoint cycles with $|V(C')|+|V(v_1C[v_m, v_1])| \geq n-1 > h$, a contradiction. Thus (21) is proved. Now by (21), $d_G(v_2) \leq |\{v_1, v_3, v_{i_p}, v_n\}| \leq 4$, which contradicts (16).

We now consider the case where $j_1 = 2$. If $i_p \le n-2$, then by considering $N_G(v_{n-1})$ in place of $N_G(v_2)$, we can argue as in the preceding paragraph to get a contradiction. Thus we may assume $i_p = n-1$. This implies that (i) of Claim 2.3 holds (so $j_q = d-1$ and $i_1 = n-d+2$). We show that

$$V(C[v_4, v_{n-2}]) \cap N_G(v_2) = \emptyset.$$

$$(22)$$

Suppose that there exists a $v_k \in V(C[v_4, v_{n-2}]) \cap N_G(v_2)$. Set $C' = C[v_2, v_k]v_2$. If $4 \le k \le j_q - 1$, C' and $v_n C[v_{k+1}, v_n]$ are disjoint cycles with $|V(C')| + |V(v_n C[v_{k+1}, v_n])| = n - 1 > h$; if $j_q \le k \le i_1 - 2$, then since $q = d - 2 \ge 4$, $v_2 C[v_k, v_{i_p}]v_1v_2$ and $v_n C[v_{j_2}, v_{j_{q-1}}]v_n$ are disjoint cycles with $|V(v_2 C[v_k, v_{i_p}]v_1v_2)| + |V(v_n C[v_{j_2}, v_{j_{q-1}}]v_n)| \ge (p + 4) + (q - 1) \ge h$; if $i_1 - 1 \le k \le n - 2$, C' and $v_1 C[v_{k+1}, v_1]$ are disjoint cycles with $|V(C')| + |V(v_1 C[v_{k+1}, v_1])| = n > h$. In any case, we get a contradiction. Thus (22) is proved. Now by (22), $d_G(v_2) \le |\{v_1, v_3, v_{n-1}, v_n\}| = 4$, which contradicts (16). This completes the proof for Subcase 1.1.

Subcase 1.2: |V(C)| < n

Write $C = v_1 v_2 \dots v_{n'} v_1(n' = |V(C)|)$. If G - V(C) contains a cycle D, then since $|V(C)| \ge h$, C and D satisfy the properties required in the Main Theorem, which contradicts the assumption that G is a counterexample. Thus G - V(C) is a forest. We divide the proof further into two cases according as G - V(C) is isomorphic to K_1 or K_2 , or not.

Subcase 1.2.1: G - V(C) is isomorphic to neither K_1 nor K_2 .

In this case, by the assumption that $\sigma_2(G) \geq h$, there exist $a, b \in V(G) - V(C)$ with $a \neq b$ such that

 $d_{G-V(C)}(a) \leq 1, d_{G-V(C)}(b) \leq 1$ and $d_G(a) + d_G(b) \geq h$. (23) If possible, we choose a and b so that they lie in the same component of G-V(C) (we allow $ab \in E(G)$). Since $\min\{|N_G(a) \cap V(C)|, |N_G(b) \cap V(C)|\} \geq \delta(G) - 1 \geq 2$ by Claim 2.1, and $\max\{|N_G(a) \cap V(C)|, |N_G(b) \cap V(C)|\} \geq \lceil h/2 \rceil - 1 \geq 5$ by (23) and the assumption of Case 1, there exist four distinct vertices $u, v, u', v' \in V(C)$ such that u, v, u', v' occur on C in

this order, $u, v \in N_G(a)$, and $u', v' \in N_G(b)$. We may assume that we have chosen u, v, u', v' so that |V(C[v, u'])| + |V(C[v', u])| is as small as possible. Then $(N_G(a) \cup N_G(b)) \cap ((V(C[v, u']) - \{v, u'\}) \cup (V(C[v', u]) - \{v', u\})) = \emptyset$. If $|E(C[u, v])| + |E(C[u', v'])| \ge h - 4$, then the two cycles aC[u, v]a and bC[u', v']b satisfy the required properties. Thus

$$|E(C[u,v])| + |E(C[u',v'])| \le h - 5. \tag{24}$$

We first consider the case where a and b lie in the same component of G-V(C). Write $(N_G(a) \cup N_G(b)) \cap (V(C[u,v])) = \{v_{i_1}, \ldots, v_{i_s}\}$ and $(N_G(a) \cup N_G(b)) \cap (V(C[u',v'])) = \{v_{i_{s+1}}, \ldots, v_{i_{s+t}}\}$. We may assume $i_1 < i_2 < \ldots < i_{s+t}$ (thus $u = v_{i_1}, v = v_{i_s}, u' = v_{i_{s+1}}, v' = v_{i_{s+t}}$). By the maximality of |V(C)|, $i_{l+1} - i_l \ge 2$ for each $1 \le l \le s + t - 1$, and hence $|E(C[u,v])| + |E(C[u',v'])| \ge 2(s-1) + 2(t-1)$. By (24), this implies

$$s + t \le (h - 1)/2. \tag{25}$$

On the other hand, $s + t = |(N_G(a) \cup N_G(b)) \cap V(C)| = |N_G(a) \cap V(C)| + |N_G(b) \cap V(C)| - |N_G(a) \cap N_G(b) \cap V(C)| \ge h - 2 - |N_G(a) \cap N_G(b) \cap V(C)|$ by (23), and hence

$$|N_G(a) \cap N_G(b) \cap V(C)| > (h-3)/2$$
 (26)

by (25). It follows from (25) and (26) that for each $1 \leq l \leq s+t-1$, we have $v_{i_l} \in N_G(a) \cap N_G(b)$ or $v_{i_{l+1}} \in N_G(a) \cap N_G(b)$, and hence $i_{l+1} - i_l \geq 3$ by the maximality of |V(C)|. Since $s+t = |(N_G(a) \cup N_G(b)) \cap V(C)| \geq \max\{|N_G(a) \cap V(C)|, |N_G(b) \cap V(C)|\} \geq h/2 - 1$ by (23), this implies that $|E(C[u, v])| + |E(C[u', v'])| \geq 3(s-1) + 3(t-1) \geq 3(h/2-3) > h-4$, which contradicts (24).

We now consider the case where a and b lie in distinct components of G-V(C). In this case, our choice of a and b implies that each component of G-V(C) is isomorphic to K_1 or K_2 . Our choice of a and b also implies that each component of G-V(C) which is isomorphic to K_2 contains a vertex whose degree in G is strictly less than h/2. Consequently there exists a component F of G-V(C) such that $F\cong K_1$ and the unique vertex x of F satisfies $d_G(x)\geq h/2$. We may assume a=x. Then by the maximality of $|V(C)|, |E(C[u,v])|+|E(C[u',v'])|\geq 2(|N_G(a)\cap V(C[u,v])|-1)+2(|N_G(a)\cap V(C[u',v'])|-1)=2d_G(a)-4\geq h-4$, which contradicts (24).

Subcase 1.2.2. G - V(C) is isomorphic to K_1 or K_2 .

If $G - V(C) \cong K_1$, let $V(G) - V(C) = \{a\}$, and write $N_G(a) \cap V(C) = \{v_{i_1}, v_{i_2}, \dots, v_{i_p}\}$ with $i_1 < i_2 < \dots < i_p$; if $G - V(C) \cong K_2$, let $V(G) - V(C) = \{a, b\}$, and write $(N_G(a) \cup N_G(b)) \cap V(C) = \{v_{i_1}, v_{i_2}, \dots, v_{i_p}\}$ with $i_1 < i_2 < \dots < i_p$. By Claim 2.1, $p \ge d_G(a) - 1 \ge 2$. Set $I = \{i_1, \dots, i_p\}$. We may assume $i_1 = 1$. Then $n' \notin I$ by the maximality of |V(C)|. Write $N_G(v_{n'}) \cap V(C) = \{v_1, v_{j_2}, \dots, v_{j_{q-1}}, v_{n'-1}\}$ with $1 < j_2 < j_3 < \dots < j_{q-1} < n'$, and set $J = \{1, j_2, \dots, j_{q-1}, n' - 1\}$. Since $n' \notin I$, $q = d_G(v_{n'}) \ge 3$ by

Claim 2.1. By the assumption that $\sigma_2(G) \geq h$, we also get

$$|I| + |J| = p + q \ge d_G(a) - 1 + d_G(v_{n'}) \ge h - 1.$$
 (27)

As in Subcase 1.1, for a set X of integers, we let $X^+ = \{i+1 | i \in X\}$ and $X^- = \{i-1 | i \in X\}$. By the maximality of |V(C)|,

$$I \cap J^+ = \emptyset. \tag{28}$$

We first consider the case where $i_2 < j_{q-1}$. Choose $k \in I$ and $l \in J$ with $i_2 \le k < l \le j_{q-1}$ so that l-k is as small as possible. Set $L_1 = \{1, 2, \ldots, k\}$, $L_2 = \{l, l+1, \ldots, n'\}$. Then $I \cup J \subseteq L_1 \cup L_2$ by the minimality of l-k. By (28), $(I \cap L_1)^- \cap (J \cap L_1) = \emptyset$, and hence $|L_1| \ge |(I \cap L_1)^- - \{0\}| + |J \cap L_1| \ge |I \cap L_1| + |J \cap L_1| - 1$. Again by (28), $(I \cap L_2) \cap (J \cap L_2)^+ = \emptyset$. Since $n' \notin J$ by the definition of J, this implies $|L_2| \ge |I \cap L_2| + |J \cap L_2|$. Consequently

$$|L_1| + |L_2| \ge |I| + |J| - 1 \ge h - 2.$$
 (29)

On the other hand, since $1, k \in I$ and $l \in J$, $\langle V(C[v_1, v_k]) \cup (V(G) - V(C)) \rangle$ contains a cycle of order at least $|L_1| + 1$ and $v_{n'}C[v_l, v_{n'}]$ is a cycle of order $|L_2|$, and hence $|L_1| + 1 + |L_2| \leq h - 1$ by the assumption that G is a counterexample. Thus equality holds in (29), and hence equality holds in (27). In particular, $p = d_G(a) - 1 = h - d_G(v_{n'}) - 1$. Since $n' \notin I$, this implies that $G - V(C) \cong K_2$ and $v_i \in N_G(a) \cap N_G(b)$ for all $i \in I$. Therefore $\langle V(C[v_1, v_k]) \cup (V(G) - V(C)) \rangle$ contains a cycle of order $|L_1| + 2$, and hence $|L_1| + 2 + |L_2| \leq h - 1$, which contradicts (29). This concludes the discussion for the case where $i_2 < i_{g-1}$.

We now consider the case where $i_2 \geq j_{q-1}$. Note that by the maximality of |V(C)|, $i_{r+1} - i_r \ge 2$ for each $1 \le r \le p-1$. First assume $p \ge 4$. Then $|V(C[v_{i_3}, v_{i_p}])| \ge 2p - 5$, and hence $\langle V(C[v_{i_3}, v_{i_p}]) \cup (V(G) - V(C)) \rangle$ contains a cycle C_1 of order at least 2p-4. Also $C[v_{n'}, v_{j_{q-1}}]v_{n'}$ is a cycle C_2 of order at least q, and since C_1 and C_2 are disjoint we have $|V(C_1)| + |V(C_2)| \ge 2p - 1$ $4+q \ge p+q$. Consequently by the assumption that G is a counterexample, equality holds in (27). As before, this implies that $G - V(C) \cong K_2$ and $v_i \in N_G(a) \cap N_G(b)$ for all $i \in I$. Therefore $\langle V(C[v_{i_3}, v_{i_p}]) \cup (V(G) - V(C)) \rangle$ contains a cycle of order at least 2p-3, which contradicts the assumption that G is a counterexample. Next assume p=3. Then $\langle V(C[v_{i_2},v_{i_3}]) \cup (V(G)-1) \rangle$ V(C) contains a cycle of order at least 4. Also since $q \ge h - 4 > 4$ by (27), $C[v_{n'}, v_{j_{q-2}}]v_{n'}$ is a cycle of order at least q-1, and we have 4+q-1=p+q. Consequently equality holds in (27). This implies that $G - V(C) \cong K_2$ and $v_i \in N_G(a) \cap N_G(b)$ for all $i \in I$, and hence $\langle V(C[v_{i_2}, v_{i_3}]) \cup (V(G) - V(C)) \rangle$ contains a cycle of order at least 5, a contradiction. Finally assume p=2. Then by Claim 2.1, $G-V(C) \cong K_2$ and $v_i \in N_G(a) \cap N_G(b)$ for each $i \in I$. By (27), we also have $q \ge h-3 > 4$. If $i_2 > j_{q-1}$, then $abv_{i_2}a$ and $C[v_{n'}, v_{j_{q-1}}]v_{n'}$ are disjoint cycles with $|V(abv_{i_2}a)| + |V(C[v_{n'}, v_{j_{q-1}}]v_{n'})| \ge 3 + q \ge h$, a contradiction. Thus $i_2 = j_{q-1}$. By (28), this implies $j_{q-1} - 1 \notin J$, and hence $|V(C[v_{j_2}, v_{j_{q-1}}])| \geq q-1$. Consequently abv_1a and $v_{n'}C[v_{j_2}, v_{j_{q-1}}]v_{n'}$

are disjoint cycles and $|V(abv_1a)| + |V(v_{n'}C[v_{j_2}, v_{j_{q-1}}]v_{n'})| \ge 3 + q \ge h$, which is again a contradiction. This completes the proof for Case 1.

Case 2:
$$n = h + 2$$
 or $7 \le h \le 10$

By Theorem 1, G contains two disjoint cycles C_1 and C_2 . We may assume that C_1 and C_2 are chosen so that $|V(C_1)|+|V(C_2)|$ is as large as possible, and so that $\omega(G-V(C_1)-V(C_2))$ is as large as possible, subject to the condition that $|V(C_1)|+|V(C_2)|$ is maximum (here $\omega(G-V(C_1)-V(C_2))$) denotes the number of components of $G-V(C_1)-V(C_2)$). By the assumption that G is a counterexample,

$$|V(C_1)| + |V(C_2)| \le h - 1. \tag{30}$$

Let
$$H = G - V(C_1) - V(C_2)$$
. Since $n \ge h + 2$, we have $|V(H)| \ge 3$ by (30).

Claim 2.4. Let $\alpha = 1$ or 2. Let H' be a component of H, and let $a \in V(H')$. Then the following hold.

- (i) If $v \in V(C_{\alpha})$ and $av \in E(G)$, then $E(v^+, V(H')) = \emptyset$ and $E(v^{+2}, V(H' a)) = \emptyset$.
- (ii) (a) $|E(a, V(C_{\alpha}))| \leq |V(C_{\alpha})|/2$.
 - (b) If $|E(a, V(C_{\alpha}))| = |V(C_{\alpha})|/2$, then $E(V(H'-a), V(C_{\alpha})) = \emptyset$.

Proof. Statement (i) follows immediately from the maximality of $|V(C_1)| + |V(C_2)|$, and (i) implies (ii).

We now consider two subcases separately according as H is connected or not.

Subcase 2.1. H is disconnected.

In this subcase, we divide the proof further into two cases. Subcase 2.1.1. n = h + 2.

Let H_1, H_2 be two components of H. Let $a_1 \in V(H_1)$ and $a_2 \in V(H_2)$. By the assumption that $\sigma_2(G) \geq h$ and by Claim 2.4(ii)(a), $n-2=h \leq d_G(a_1) + d_G(a_2) \leq |V(C_1)| + |V(C_2)| + |V(H_1)| - 1 + |V(H_2)| - 1 \leq n-2$. Thus equality holds, which means that $|V(H)| = |V(H_1)| + |V(H_2)|$ and $|E(a_i, V(C_\alpha))| = |V(C_\alpha)|/2$ for each i = 1, 2 and each $\alpha = 1, 2$. Hence by Claim 2.4(ii)(b), $E(V(H_i - a_i), V(C_1 \cup C_2)) = \emptyset$ for each i = 1, 2. Since G is 2-connected, this forces $|V(H_1)| = |V(H_2)| = 1$, and hence |V(H)| = 2. This contradicts the earlier assertion that $|V(H)| \geq 3$.

Subcase 2.1.2. $7 \le h \le 10$

By the assumption that $\sigma_2(G) \geq h$, there exists a component H' of H such

that

$$d_G(x) \ge \lceil h/2 \rceil$$
 for every $x \in V(H')$. (31)

Since $|E(x, V(C_1) \cup V(C_2))| \le (h-1)/2$ for each $x \in V(H')$ by Claim 2.4(ii)(a) and (30), we have $|V(H')| \ge 2$.

Claim 2.5. Every vertex of H', possibly except one, has degree at least 2 in H'.

Proof. Suppose that there exist $a, b \in V(H')$ with $a \neq b$ such that $d_H(a) = d_H(b) = 1$. Then by (31), $|E(x, V(C_1) \cup V(C_2))| \geq \lceil h/2 \rceil - 1$ for each $x \in \{a, b\}$. In view of Claim 2.4(ii)(a) and (30), this implies that at least one of $|V(C_1)|$ and $|V(C_2)|$ is even, and that $|E(x, V(C_\alpha))| = \lfloor |V(C_\alpha)|/2 \rfloor$ for each $\alpha \in \{1, 2\}$ and each $x \in \{a, b\}$. But this contradicts Claim 2.4(ii)(b). \square

Note that Claim 2.5 implies that the order of H' is at least 3, and that if H' is not 2-connected, then H' has an endblock of order at least 3. Now if H' is 2-connected, let B = H'; if H' is not 2-connected, let B be an endblock of H' with $|V(B)| \geq 3$. Fix $z \in V(B)$. In the case where H' is not 2-connected, we let z be the unique cutvertex of H' which lies in B. We derive a contradiction by proving a series of claims.

Claim 2.6. Let $\alpha = 1$ or 2, and let $a, b \in V(B - z)$ with $a \neq b$. Suppose that there exist $u, v \in V(C_{\alpha})$ such that $au, bv \in E(G)$. Then u = v.

Proof. Suppose that there exist $u, v \in V(C_{\alpha})$ with $u \neq v$ such that $au, bv \in E(G)$. Since $|V(B)| \geq 3$, B contains a path P of order at least 3 joining a and b. Also since $|V(C_{\alpha})| \leq h - 1 - 3 \leq 6$ by (30), $C_{\alpha}[u, v]$ or $C_{\alpha}[v, u]$ has order at least $|V(C_{\alpha})| - 2$ by maximality of C_{α} . Consequently $\langle V(C_{\alpha}) \cup V(P) \rangle$ contains a cycle of order at least $|V(C_{\alpha})| + 1$, a contradiction.

Claim 2.7. There exists an $a \in V(B-z)$ such that $|E(a,V(C_1))| \geq 2$ or $|E(a,V(C_2))| \geq 2$.

Proof. We may assume $|V(C_1)| \leq |V(C_2)|$. Suppose that for every $x \in V(B-z)$, we have $|E(x,V(C_1))| \leq 1$ and $|E(x,V(C_2))| \leq 1$. Then by (31), $d_B(x) \geq \lceil h/2 \rceil - 2$ for every $x \in V(B-z)$, (32)

and hence

$$|V(B)| \ge \lceil h/2 \rceil - 1. \tag{33}$$

Let C be a longest cycle in B. Since (32) in particular implies $\sigma_2(B) \geq \lceil h/2 \rceil$, it follows from Theorem 2 that

$$|V(C)| \ge \min\{\lceil h/2\rceil, |V(B)|\}. \tag{34}$$

On the other hand, (30) together with the maximality of $|V(C_1)| + |V(C_2)|$ implies that $|V(C)| \le |V(C_1)| \le \lfloor (h-1)/2 \rfloor = \lceil h/2 \rceil - 1$, and hence $|V(B)| = |V(C)| = |V(C_1)| = \lceil h/2 \rceil - 1$ by (33) and (34). This implies that B is a complete graph and $|E(x, V(C_1))| = |E(x, V(C_2))| = 1$ for every $x \in V(B-z)$. By Claim 2.6, there exists a $v \in V(C_1)$ such that $xv \in E(G)$ for every $x \in V(B-z)$. But then $\langle V(B) \cup \{v\} \rangle$ contains a cycle of order $|V(B)| + 1 > |V(C_1)|$, a contradiction.

Let a be as in Claim 2.7. We may assume $|E(a, V(C_1))| \ge 2$.

Claim 2.8. There exists $a \ b \in V(B) - \{z, a\}$ such that $|E(b, V(C_2))| \ge 2$.

Proof. Suppose that $|E(x, V(C_2))| \le 1$ for every $x \in V(B) - \{z, a\}$. Then for every $x \in V(B) - \{z, a\}$, we have $d_B(x) \ge \lceil h/2 \rceil - 1$ because $E(x, V(C_1)) = \emptyset$ by Claim 2.6. Hence $|V(B)| \ge \lceil h/2 \rceil \ge 4$. Take $ay \in E(B)$. Then by Lemma 5, B contains a path P of length at least $\lceil h/2 \rceil - 1$ joining a and y, and hence we obtain a cycle of length at least $\lceil h/2 \rceil$ by adding ay to P. But since $\min\{|V(C_1)|, |V(C_2)|\} \le (h-1)/2$ by (30), this contradicts the maximality of $|V(C_1)| + |V(C_2)|$.

We are now in a position to derive a final contradiction. Let b be as in Claim 2.8. By Claim 2.6,

$$E(x, V(C_1)) = \emptyset \text{ for every } x \in V(B) - \{z, a\}, \tag{35}$$

and

$$E(x, V(C_2)) = \emptyset \text{ for every } x \in V(B) - \{z, b\}.$$
 (36)

By symmetry, we may assume $|V(C_1)| \leq |V(C_2)|$. By Claim 2.4(ii)(a), $|V(C_1)| \geq 4$, and hence h = 9 or 10 and $4 = |V(C_1)| \leq |V(C_2)| \leq 5$ by (30). By Claim 2.4(ii)(a), this implies $|E(a, V(C_1))| = |E(b, V(C_2))| = 2$, and hence $d_B(x) \geq \lceil h/2 \rceil - 2 = 3$ for each $x \in \{a, b\}$ by (35) and (36). This implies $|V(B)| \geq 4$, and hence $V(B) - \{z, a, b\} \neq \emptyset$. Since $d_B(x) \geq 5$ for every $x \in V(B) - \{z, a, b\}$ by (35) and (36), this implies $|V(B)| \geq 6$. Since $\sigma_2(B) \geq 2 + \min\{d_B(x)| \ x \in V(B-z)\} \geq 5$, it now follows from Theorem 2 that B contains a cycle of order at least 5. Since $|V(C_1)| = 4$, this contradicts the maximality of $|V(C_1)| + |V(C_2)|$. This concludes the discussion for Subcase 2.1.

Subcase 2.2. H is connected.

We may assume $|V(C_1)| \leq |V(C_2)|$. We start with the following refinement of Claim 2.4.

Claim 2.9. Let $\alpha = 1$ or 2. Let $a \in V(H)$ and $v \in V(C_{\alpha})$, and suppose that $av \in E(G)$. Then the following hold.

- (i) $E(\{v^+, v^{+2}\}, V(H)) = \emptyset$.
- (ii) $E(v^{+3}, V(H-a)) = \emptyset$.

Proof. Recall that $|V(H)| \geq 3$. By Claim 2.4, $E(v^+, V(H)) = \emptyset$ and $E(v^{+2}, V(H-a)) = \emptyset$. If $v^{+2}a \in E(G)$, then since $E(v^+, V(H)) = \emptyset$, we get a contradiction to the maximality of $\omega(H)$ by replacing C_{α} by the cycle $aC_{\alpha}[v^{+2},v]a$. Thus $v^{+2}a \notin E(G)$, which proves (i). To prove (ii), suppose that $E(v^{+3}, V(H-a)) \neq \emptyset$ (it is possible that $v^{+3} = v$). Take $b \in N_G(v^{+3}) \cap V(H-a)$, and let P be a path in H joining a and b. By (i), $E(\{v^+, v^{+2}\}, V(H)) = \emptyset$. Hence by replacing C_{α} by the cycle $PC_{\alpha}[v^{+3}, v]a$, we get a contradiction to the maximality of $|V(C_1)| + |V(C_2)|$ or the maximality of $\omega(H)$.

Claim 2.10. Let $\alpha = 1$ or 2. Let $a, b \in V(H)$ with $a \neq b$. Then $|E(\{a, b\}, V(C_{\alpha}))| \leq |V(C_{\alpha})|/2$.

Proof. Write $(N_G(a) \cup N_G(b)) \cap V(C_\alpha) = \{w_1, \dots, w_t\}$ so that w_1, \dots, w_t occur on C_α in this order. We may assume $t \geq 1$. For each $1 \leq i \leq t$, let $X_i = V(C[w_i, w_{i+1}^-])$ (in the case where i = t, we take $w_{i+1} = w_1$). Let $1 \leq i \leq t$. If $|E(w_i, \{a, b\})| = 1$, then since $|X_i| \geq 3$ by Claim 2.9, we have $|E(\{a, b\}, X_i)| = 1 \leq |X_i|/3 < |X_i|/2$; if $|E(w_i, \{a, b\})| = 2$, then $|X_i| \geq 4$ by Claim 2.9, and hence $|E(\{a, b\}, X_i)| = 2 \leq |X_i|/2$. Since i is arbitrary, we obtain $|E(\{a, b\}, V(C_\alpha)| = \sum_{1 \leq i \leq t} |E(\{a, b\}, X_i)| \leq \sum_{1 \leq i \leq t} |X_i|/2 = |V(C_\alpha)|/2$.

Returning to the proof of the Main Theorem, we first show that H contains a cycle. Suppose that H is a tree, and let $a,b \in V(H)$ be distinct vertices with $d_H(a) = d_H(b) = 1$. Since $|V(H)| \geq 3$, a and b are non-adjacent, and hence $d_G(a) + d_G(b)\sigma_2(G) \geq h$. On the other hand, it follows from Claim 2.10 and (30) that $d_G(a) + d_G(b) = |E(\{a,b\}, V(C_1) \cup V(C_2))| + 2 \leq (|V(C_1)| + |V(C_2)|)/2 + 2 \leq (h-1)/2 + 2 < h$, which is a contradiction. Thus H contains a cycle. We now distinguish two cases.

Subcase 2.2.1. n = h + 2.

Before proving this subcase, we define the following notation. Let $C = x_1x_2 \dots x_{|V(C)|}x_1$ be a cycle and let Y be a subset of V(C). We define $Y^+ = \{x_i^+ \mid x_i \in Y\}$ and $Y^{+2} = \{x_i^{+2} \mid x_i \in Y\}$.

By Claim 2.10, there exists an $a \in V(H)$ such that $|E(a, V(C_1) \cup V(C_2))| \le (|V(C_1)| + |V(C_2)|)/4$. Then $d_G(a) \le |V(H)| - 1 + (|V(C_1)| + |V(C_2)|)/4$. By Claim 2.9, there exists a $u \in V(C_1)$ such that $E(\{u, u^+\}, V(H)) = \emptyset$. Then $|N_G(u) \cap V(C_2)| \ge d_G(u) - (|V(C_1)| - 1) \ge \sigma_2(G) - d_G(a) - (|V(C_1)| - 1) \ge h - d_G(a) - (|V(C_1)| - 1) \ge n - 2 - (|V(H)| - 1 + (|V(C_1)| + |V(C_2)|)/4) - (|V(C_1)| - 1) = (3|V(C_2)| - |V(C_1)|)/4 \ge |V(C_2)|/2$. Similarly $|N_G(u^+) \cap V(C_2)| \ge |V(C_2)|/2$, which clearly implies $|(N_G(u^+) \cap V(C_2))^+ \cup (N_G(u^+) \cap V(C_2))^{+2}| \ge |V(C_2)|/2 + 1$. Consequently $(N_G(u) \cap V(C_2)) \cap ((N_G(u^+) \cap V(C_2))^+ \cup (N_G(u^+) \cap V(C_2))^{+2}) \ne \emptyset$, which implies that $\langle V(C_1) \cup V(C_2) \rangle$ contains a cycle C with $|V(C)| \ge |V(C_1)| + |V(C_2)| - 1$. Now let D be a cycle in C and C are disjoint cycles with $|V(C)| + |V(C_1)| \ge |V(C_1)| + |V(C_2)| + 2$, which contradicts the maximality of $|V(C_1)| + |V(C_2)|$.

Subcase 2.2.2. $7 \le h \le 10$.

Let D be a longest cycle in H. By the maximality of $|V(C_1)| + |V(C_2)|$,

 $|V(D)| \le |V(C_1)|. \tag{37}$

By Lemma 6, $\delta(H) \leq |V(D)| - 1$. Take $a \in V(H)$ such that $d_H(a) = \delta(H)$. Then by Claim 2.9, $d_G(a) \leq |V(D)| - 1 + \lfloor |V(C_1)|/3 \rfloor + \lfloor |V(C_2)|/3 \rfloor$. By Claim 2.9, there exists a $u \in V(C_1)$ such that $E(\{u, u^+\}, V(H)) = \emptyset$. Then $d_G(x) \geq \sigma_2(G) - d_G(a) \geq h - d_G(a)$ for each $x \in \{u, u^+\}$. Thereby and because of $d_G(x) \leq |V(C_1)| - 1 + |E(x, V(C_2))|$, we have

$$|E(x, V(C_2))| \ge h - (|V(D)| - 1 + \lfloor |V(C_1)|/3 \rfloor + \lfloor |V(C_2)|/3 \rfloor) - (|V(C_1)| - 1) \text{ for each } x \in \{u, u^+\}.$$
(38)

Suppose that $|V(D)| + |V(C_1)| + \lfloor |V(C_1)|/3 \rfloor + \lfloor |V(C_2)|/3 \rfloor \le h$. Then $|E(x, V(C_2))| \ge 2$ for each $x \in \{u, u^+\}$ by (38), and hence there exist $v, w \in V(C_2)$ with $v \ne w$ such that $uv, u^+w \in E(G)$. Since $|V(C_2)| \le 6$ by (30), this implies that $\langle V(C_1) \cup V(C_2) \rangle$ contains a cycle C with $|V(C)| \ge |V(C_1)| + |V(C_2)| - 2$. But then $|V(C)| + |V(D)| \ge |V(C_1)| + |V(C_2)| + 1$, which contradicts the maximality of $|V(C_1)| + |V(C_2)|$. Thus

 $|V(D)| + |V(C_1)| + ||V(C_1)|/3| + ||V(C_2)|/3| \ge h + 1.$ (39) Since $||V(C_1)|/3| + ||V(C_2)|/3| \le 3$ by (30), this together with (37) implies that $|V(C_1)| \ge \lceil (h-2)/2 \rceil = \lfloor (h-1)/2 \rfloor$, and hence $|V(C_1)| = \lfloor (h-1)/2 \rfloor$ and $|V(C_2)| \le \lceil (h-1)/2 \rceil \le 5$ by (30). This in turn implies $||V(C_1)|/3| = ||V(C_2)|/3| = 1$, and hence it follows from (30),(39) and (37) that h-1 is even and $|V(D)| = |V(C_1)| = |V(C_2)| = (h-1)/2$. It now follows from (38) that $E(x, V(C_2)) \ne \emptyset$ for each $x \in \{u, u^+\}$, and hence $|V(C_1)| + |V(C_2)|$ contains a cycle C with $|V(C)| \ge |V(C_1)| + 1$. But then $|V(C)| + |V(D)| \ge |V(C_1)| + |V(D)| + 1 = |V(C_1)| + |V(C_2)| + 1$, which again contradicts the maximality of $|V(C_1)| + |V(C_2)|$. This completes the proof of the Main Theorem.

Acknowledgments

This research was partially supported by the 21st Century COE Program; Integrative Mathematical Science: Progress in Mathematics Motivated by Social and Natural Sciences (to S. F.) and Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by Sumitomo Foundation and by Inoue Research Award for Young Scientists (to K. K.).

References

- [1] J.-C.Bermond, On Hamilton walks, in "Proceedings of the Fifth British Combinatorial Conference, Aberdeen,1975", 41-51, Congressus Numerantiaum No. XV, Utilitas Math, Winnipeg, 1976.
- [2] S.Brandt, G.Chen, R.J.Gould and L.Lesniak, Degree conditions for 2-factors, J.Graph Theory **24**(1997) 165-173.
- [3] G.A.Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. **3**(1952) 69-81.
- [4] Y.Egawa, R.Glas, S.C.Locke, Cycles and paths through specified vertices in k-connected graphs, J. Combin. Theory, Ser. **B** 52(1991) 20-29.
- [5] Y.Egawa, M.Hagita, K.Kawarabayashi, and H.Wang, Covering vertices of a graph by k disjoint cycles, Discrete Math. **270**(2003) 114-124.
- [6] H.Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18(1998) 487-492.
- [7] K.Kawarabayashi, Degree sum conditions and graphs which are not covered by k cycles, submitted.
- [8] H.Wang, On the maximal number of vertices covered by disjoint cycles. Australas. J. Combin. **21**(2000) 179-186.
- [9] H.Wang, On the maximum number of independent cycles in a graph, Discrete Math. **205**(1999) 183-190.