耐量子計算機暗号に関する いくつかの研究事例

縫田 光司 (NUIDA, Koji)九州大学 マス・フォア・インダストリ研究所

「暗号理論の数理と社会実装」セミナー @京都大学 2024年1月19日

- ・概要: 耐量子計算機暗号について
- 研究事例1:署名方式UOVの改良
 [Furue et al., ASIACRYPT 2021]
- •研究事例2:署名方式SPHINCS+の安全性解析 [Perlner et al., PQCrypto 2022]
- 研究事例3:LLL系格子基底簡約アルゴリズムの計算量評価
 [Odagawa-<u>N.</u>, arXiv 2021]

・概要:耐量子計算機暗号について

- 研究事例1:署名方式UOVの改良
 [Furue et al., ASIACRYPT 2021]
- •研究事例2:署名方式SPHINCS+の安全性解析 [Perlner et al., PQCrypto 2022]
- 研究事例3:LLL系格子基底簡約アルゴリズムの計算量評価
 [Odagawa-<u>N.</u>, arXiv 2021]

公開鍵暗号化通信

量子計算機 (量子コンピュータ)

- 量子計算(量子力学的原理が組み込まれた数学モデルに基づく 計算)を実行できるコンピュータ
- ある種の問題について、古典計算機を大幅に超える性能を発揮
 →(計算量的安全な) 暗号技術への脅威にもなり得る
- ショアの量子アルゴリズム [Shor, 1994]を用いると、 (よりによって)
 素因数分解(←RSA暗号の安全性の根拠)
 離散対数問題(←「楕円曲線暗号」の安全性の根拠)
 が(理論上は)効率的に計算可能となる

耐量子計算機暗号

- 既存の量子アルゴリズムで破れない(公開鍵) 暗号技術
 もちろん、従来型の古典計算機でも破れてはいけない
- •量子計算機の将来的な大規模化を見据えて、米国NISTにより 標準化公募が行われ、応募された方式を現在厳選中
 - 2022年7月(Round 3)に最初の選定方式発表(鍵交換、署名)
 - ・現在選定手順の延長戦(Round 4)中
 - さらに、署名方式を追加で公募&現在選定手順中

計算量的安全性の評価の方法論

(c) Koji NUIDA

計算量的安全性の評価の方法論

- •概要: 耐量子計算機暗号について
- ・研究事例1:署名方式UOVの改良 [Furue et al., ASIACRYPT 2021]
- •研究事例2:署名方式SPHINCS+の安全性解析 [Perlner et al., PQCrypto 2022]
- 研究事例3:LLL系格子基底簡約アルゴリズムの計算量評価
 [Odagawa-<u>N.</u>, arXiv 2021]

署名方式UOV

- [Kipnis et al., EUROCRYPT 1999]
- 多変数多項式暗号の一種
- ・メッセージmの署名:連立方程式系 $\vec{P}(\sigma) = H(m)$ の解 σ
 - \vec{P} は有限体上の2次多項式のベクトル、Hは暗号学的ハッシュ関数
 - 一般の状況では解 σ を得るのは難しい (NP困難)
 - 検証鍵Pの生成時に、解を得るヒント(署名鍵)を用意しておく
- •署名の検証:与えられた(m,σ)が $\vec{P}(\sigma) = H(m)$ を満たすか確認

署名方式UOV

•検証鍵**戸**の生成

- •「解きやすい」方程式系("central map")に、ランダムな アフィン変数変換を施す(後者が署名鍵)
- central map: v + o変数の2次式で、後半o個の変数に関する2次項なし
- 署名生成 $(\vec{P}(\sigma) = H(m) \circ m \sigma \sigma)$ 計算)
 - ・ 変数変換でcentral mapの場合に帰着
 - 前半v個の変数の値をランダムに選択
 - •残りはo変数連立1次方程式なので解が(存在すれば)求まる (解が存在しなければ前ステップからやり直し)

Block-Anti-Circulant (BAC-)UOV

- UOVの難点の一つ:公開鍵サイズが大きい
 - (2次形式で表した際の)行列が2次元的なデータであるため
- BAC-UOV [Szepieniec-Preneel, SAC 2019]
 - 行列をブロック化して、各ブロックを(反)巡回行列から選ぶ
 - (反)巡回行列は1次元構造で記録可能 → 公開鍵サイズの削減
- しかし、BAC-UOVには攻撃が存在 [Furue et al., PQCrypto 2020]
 - 行列の構造の特殊性を利用
 - 完全に破られてはいないが、パラメータ選択に大きな悪影響

提案方式QR-UOV [Furue et al., 2021]

- QRは"quotient ring"の略
- BAC-UOVの (反) 巡回行列を剰余環 $F_q[x]/(f)$ の元へ一般化
 - 各行は $g \mod f, xg \mod f, x^2g \mod f, ...$ の係数ベクトル
 - 巡回行列は $f = x^k 1$ の形の特殊例
 - *f*は既約多項式にする(BAC-UOVへの攻撃法の対策)
- •要となる数学的事実:ある多項式から得られる行列全体の 集合を A_f とするとき、下記を満たす可逆行列Wが存在する: どの行列 $X \in A_f$ についても、WXは対称行列である
 - 2次形式として扱う際の転置の操作と相性がよい

提案方式QR-UOV [Furue et al., 2021]

多変数多項式暗号の署名方式Rainbowとの性能比較
 Rainbow: NIST標準化Round 3候補の一つ [Ding et al.]

安全性強度	公開鍵サイズ (KB)		署名サイズ (B)	
	Rainbow	QR-UOV	Rainbow	QR-UOV
I	57.4	23.8	66.0	113.9
	252.3	85.8	164.0	166.8
V	511.2	264.3	212.0	230.9

- 公開鍵サイズが30%~50%程度に削減(署名サイズは増大)
- •NIST標準化追加公募に応募中
 - 東京大-九州大(IMI、池松)-長崎県立大-NTTの合同チーム

・概要: 耐量子計算機暗号について

- 研究事例1:署名方式UOVの改良
 [Furue et al., ASIACRYPT 2021]
- ・ 研究事例 2: 署名方式SPHINCS+の安全性解析 [Perlner et al., PQCrypto 2022]
- 研究事例3:LLL系格子基底簡約アルゴリズムの計算量評価
 [Odagawa-<u>N.</u>, arXiv 2021]

SPHINCS+

- SPHINCS : [Bernstein et al., EUROCRYPT 2015]
- ハッシュベース署名
 - (Round 3当時は) SHAKE-256, SHA-256, Harakaに対応
 今回はSHA-256ベースの構成を扱う(攻撃対象なので)
- SPHINCS+: NIST標準に選定された署名方式の一つ (他の2方式はどちらも格子ベース)

SPHINCS+への攻撃

- [Perlner et al., PQCrypto 2022]
- SPHINCS+(SHA-256を使用)のNIST category 5 (≒256ビット古典安全性)パラメータを 約217.4ビット安全性に低下させた
 - つまり、安全性が完全に破れてはいないものの、
 当初の想定通りの安全性強度ではなかった
 - Round 3 official comment (2022.6.10)で対応済みとのこと

WOTS+

Winternitz one-time署名の一種 [Hulsing, AFRICACRYPT 2013]

WOTS+

Winternitz one-time署名の一種 [Hulsing, AFRICACRYPT 2013]

検証鍵

∗署名検証:一番上まで計算して、 =○ か確認

(固定入力長) XMSS

eXtended Merkle Signature Scheme [Buchmann et al, PQCrypto 2011]

Hypertree (HT)

FORS [fors]

京都大学セミナー 2024/01/19

(c) Koji NUIDA

(c) Koji NUIDA

攻撃Step 3

*HTの署名生成に必要な残りの ○ は既知の署名から取ってくる

攻撃の概略と計算量 * category 5 パラメータ w/ SHA-256の場合

- Step 1: ある場所のWOTS+鍵(もどき)の偽造
 - tweakable hashの(多関数) multi-target第二原像探索
 - ≈ 2⁵⁸個の既知WOTS+鍵を使用
 - •計算量:前半≈2²¹⁴ (or≈2¹⁹⁶)、後半≈2^{216.42} (後述)
- Step 2: 偽造箇所直下のXMSS or FORS鍵の偽造
 - 検証鍵がStep1の鍵で署名可能になるまでランダム生成
 各回の成功確率 ≈ 2^{-215.68}
- Step 3: 偽造WOTS+鍵が用いられる(入力, 乱数)の探索
 - ・乱数を変えて試す → 各回の成功確率(最悪時) ≈ 2⁻⁶⁸

(ADRS, 入力列) SHA-256(ADRS || pk₀ || pk₁ || ··· || pk₆₃) *実際は「チェックサム項」を入力の 末尾に含むが、簡略化のため割愛 ➢ Step 1用に既知署名がより多く必要 ▶ Step 2 (XMSS or FORS鍵偽造)の 成功確率がやや低下

. . .

distinct-function multi-target secondpreimage (DM-SP) attack

京都大学セミナー 2024/01/19

(c) Koji NUIDA

DM-SP attack

DM-SP attack ➡ の出力が一致する ○ たちを探す *実際には4本の出力を一致させる 標的值 t_1 t_2 以降ではこれらは同じ挙動 ٠ • •

DM-SP attack 4×4=16本で ➡ の出力が一致する ◯ たちを探す

DM-SP attack 4本ずつ束ねていき、すべての 🔿 の出力が一致するようにする

DM-SP attack

残りの入力を調整して、標的値のどれか一つと衝突させる ↑ **distinct-functionではない**multi-target第二原像探索

DM-SP attack:計算量と対策

- 前半: 圧縮関数(256bit出力)の4-collision
 - •計算量 ≈ 2^{256×3/4} = 2¹⁹² を2^{36.42}回行う →計 ≈ 2^{228.42}
 - 実際には並列化などで総計算量を削減可能
- 後半:同一関数のmulti-target第二原像探索
 - •標的値 ≈ 2^{39.58}個 →計算量 ≈ 2^{216.42}
- •対策:より長い出力のハッシュ関数を使用
 - 最新版では対応済み(SHA-256 → SHA-512)

- ・概要: 耐量子計算機暗号について
- 研究事例1:署名方式UOVの改良
 [Furue et al., ASIACRYPT 2021]
- •研究事例2:署名方式SPHINCS+の安全性解析 [Perlner et al., PQCrypto 2022]
- 研究事例3:LLL系格子基底簡約アルゴリズムの計算量評価
 [Odagawa-N., arXiv 2021]

格子とその基底

• \mathbb{R} 上一次独立なベクトル $v_1, v_2, ..., v_m \in \mathbb{R}^n$ を用いて

$$L = \left\{ \sum_{i=1}^{m} c_i v_i : c_i \in \mathbb{Z} \right\}$$

- と表せる集合 $L \subseteq \mathbb{R}^n$ を (n次元) 格子と呼ぶ
- (v₁, v₂, ..., v_m)をその基底と呼ぶ
 - •格子の基底の選び方は(順番や-1倍を除いても)一般に複数ある
 - 以降ではfull-rank (m = n) の場合のみを扱う

格子に関する計算問題の例

- ・最短ベクトル問題(SVP):ノルム最小の非零格子点の計算
 ・入力は格子の基底によって与えられる
 - ・近似版(γ-SVP)や入力制限版(γ-uSVP)などの亜種もある
- 最近ベクトル問題(CVP):入力点に最も近い格子点の計算
- LWE(Learning with Errors)問題:
 (概要)誤差込みの有限体上の連立1次方程式を解く
 - 見た目は格子と関係なさそうだが、SVPに帰着可能
- これらの計算困難性が「格子暗号」の安全性の基盤

格子の基底簡約

- 入力された格子の基底に対し、より短い(ノルムが小さい) 格子点からなる基底を計算する
- 格子基底簡約でSVPやCVPが直接解けることは稀だが、
 SVPやCVPの(近似)アルゴリズムの事前計算に用いられる
- 主な基底簡約アルゴリズム
 - LLLアルゴリズム[Lenstra et al., Math. Ann. 1982]
 - およびその亜種(DeepLLLなど)
 - BKZアルゴリズム
 - およびその亜種(BKZ 2.0、progressive BKZなど)
 - RSR (random sampling reduction) アルゴリズム

準備:Gram-Schmidt直交化

- ベクトルの列(b₁, b₂, ..., b_n)から互いに直交するベクトルの列
 (b₁^{*}, b₂^{*}, ..., b_n^{*})を生成
- 各kについて $b_k = b_k^* + \sum_{i=1}^{k-1} \mu_{k,i} b_i^*$ を満たす ($\mu_{k,i} \in \mathbb{R}$)
 - ノルムは正規化しない

LLLアルゴリズム

- 格子基底(b₁, b₂, ..., b_n)を入力、パラメータδ ∈ (1/4,1]
 1. k ← 2
- 2. $k \leq n$ である間以下を繰り返す:
- 3. $Ab_j n b[\mu_{j,i}]b_i$ (1 ≤ *i* < *j*)を引き、 $\mu_{j,i}$ たちを更新
- 4. $\|b_k^*\|^2 \ge \left(\delta \mu_{k,k-1}^2\right)\|b_{k-1}^*\|^2 \mathcal{O} \ge \exists k \leftarrow k+1$
- 5. そうでなければ、 $b_k \ge b_{k-1}$ を交換($\& b_j^*, \mu_{j,i}$ たちを更新) および*k* ← max{*k* − 1,2}
- 6. (*b*₁,*b*₂,...,*b*_n)を出力

LLLアルゴリズムの計算量評価

- パラメータ $\delta \leq 1$ が大きいほど良い出力が得られる
- 入力ベクトルのノルムの最大値をMとすると、 $\delta < 1$ (定数)のとき、計算量は多項式オーダー $O(n^6(\log M)^3)$
- 一方、 $\delta = 1$ のときは多項式オーダーの評価は得られていない
 - $O(A^{n^3} \log M)$ 、 $A > (4/3)^{1/12}$ は定数[Akhavi, Th. Comp. Sci. 2003]
 - ・理由の直感的説明: $\delta < 1$ のときは、基底ベクトルのノルムの減少率が 1未満の定数で抑えられる(→ノルムが指数的に減少する)が、 $\delta = 1$ のときはそうできない
 - そのため実用上は $\delta = 0.99$ などad hocなパラメータ選択をしている
- •課題: $\delta = 1$ における計算量評価を改良できないか?

[Odagawa-<u>N.</u>, arXiv:2105.14695]

• $\alpha = M^n / vol(L)$ とすると、LLLアルゴリズムのループ回数は $(n-1) \left(\frac{2}{\sqrt{5}} + 1\right)^{n(n-2)} \alpha^{n-1} \left(\frac{3 \cdot (n+2)!}{8}\right)^{n/2}$ $\in \alpha^{n-1} \left(\left(\frac{2}{\sqrt{5}} + 1\right) e^{-1/2} n^{1/2 + o(1)}\right)^{n^2}$

以下である(特に有限である)

•証明の方針:ノルムがある値以下の格子点の個数の評価+次数で再帰

結果の比較

- vol(L)が定数オーダーのとき、我々の上界は(Mn)^{O(n²)}
 - $M = o(2^n/n)$ のとき、Ahkaviの上界よりも良い(小さい)
 - $M = \Omega(2^n)$ のとき、Ahkaviの上界よりも悪い(大きい)
 - 暗号の文脈では(残念ながら)こちらの場合の方が多い
- ・我々の方針は他のLLL系のアルゴリズム(例:DeepLLL)にも ほぼそのまま適用可能
 - Ahkaviの証明はLLLの場合に特化
- •課題:我々の方針をより精密化して上界を改良できないか?

- ・概要: 耐量子計算機暗号について
- 研究事例1:署名方式UOVの改良
 [Furue et al., ASIACRYPT 2021]
- •研究事例2:署名方式SPHINCS+の安全性解析 [Perlner et al., PQCrypto 2022]
- 研究事例3:LLL系格子基底簡約アルゴリズムの計算量評価
 [Odagawa-<u>N.</u>, arXiv 2021]