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Abstract

Zorn’s Lemma is a well-known equivalent of the Axiom of Choice. It is usually regarded as a topic in axiomatic set theory,
and its historically standard proof (from the Axiom of Choice) relies on transfinite recursion, a non-elementary set-theoretic
concept. However, the statement of Zorn’s Lemma itself uses only elementary terminology of partially ordered sets. Hence,
it is worthy to establish a proof using only such elementary terminology. Following this line of study, a new simple proof of
Zorn’s Lemma is given that does not even use the notion of a well-ordered set.
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1. Introduction

Zorn’s Lemma is one of the most famous equivalents of the Axiom of Choice under the Zermelo–Fraenkel set theory. It
is historically regarded as a topic of axiomatic set theory, and the “standard” proof of Zorn’s Lemma (from the Axiom
of Choice) relies on a non-elementary set-theoretic concept, called the transfinite recursion (for example, see [8, Theorem
6.1], [13, Theorem 2.2], [16, Theorem 5.4], [15, Theorem 2.1]). However, Zorn’s Lemma is ubiquitously used in mathematics,
not just in set theory, and Zorn’s Lemma can be stated with only elementary terminology of partially ordered sets (posets).
Therefore, it is worthy to establish a proof of Zorn’s Lemma by using such elementary terminology only. There exists a large
number of proofs, without transfinite recursion, of either Zorn’s Lemma (for example, see [1,3,7,9,11,12,14,17,20,22–24,
28–30]) or some property that easily implies Zorn’s Lemma; for instance, Hausdorff Maximal Principle [6,10,18,21,25,27]
and the existence of fixed points for some mappings on a poset [2,4,5,19,26,31]. Following this direction of study, in this
article, yet another simple proof of Zorn’s Lemma is given using elementary terminology only.

The proof of Zorn’s Lemma, given in the present article, is a descendant of a proof due to Lewin [22]. Intuitively
speaking, Lewin’s proof constructed a “highest” chain in a given poset as the union of some family C of chains, which was
defined by using the notion of a well-ordered set. The nontrivial point of the present work is to extract what is really
required in the proof of the properties of well-ordered sets. From this point of view, in the present work, two properties
named “(i-C)” and “(ii-C)”are introduced; a trick in the present proof is that the construction of the family C is now in two
steps, where the first step uses the condition (i-C) to construct an auxiliary family C0 and the second step constructs C
by using the condition (ii-C) defined in terms of the family C0. As a result, the terminology in the present proof is more
elementary, not even using the notion of a well-ordered set.

Notations, terminology, and the statement of Zorn’s Lemma
A poset (partially ordered set) is denoted by (P,≤), where P is a set and “≤” is a binary relation on P with the following
three axioms (for arbitrary x, y, z ∈ P ): (I) x ≤ x; (II) x ≤ y and y ≤ x imply x = y; (III) x ≤ y and y ≤ z imply x ≤ z. We
write x < y to mean “x ≤ y and x 6= y”. A subset C of P is called a chain in P if any pair (x, y) of elements of C satisfies
either x ≤ y or y ≤ x. Note that any subset of a chain in P is also a chain in P . We say that x ∈ P is an upper bound of a
chain C ⊆ P if y ≤ x holds for any y ∈ C; and x ∈ P is a strict upper bound of C if y < x holds for any y ∈ C, or equivalently,
x is an upper bound of C and x 6∈ C. A poset (P,≤) is said to be inductively ordered if any chain in P has an upper bound
in P . We say that an element x ∈ P is maximal if there exists no y ∈ P satisfying x < y. On the other hand, we say that
an element x of a chain C in P is the maximum element of C, denoted by maxC, if y ≤ x holds for any y ∈ C (i.e., x is an
upper bound of C). With the above terminology, Zorn’s Lemma is stated as follows.
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Theorem 1.1 (Zorn’s Lemma). Any inductively ordered poset (P,≤) has a maximal element.

2. Proof of Theorem 1.1

Let T := {C ⊆ P : C is a chain in P}. For each C ∈ T , define

UC := {x ∈ P : x is an upper bound of C} , UC := {x ∈ P : x is a strict upper bound of C} = UC \ C .

Then UC = UC ∪ {maxC} if the maximum element maxC of C exists, and UC = UC otherwise. Therefore,

if x ∈ UC , y ∈ P , and x < y, then y ∈ UC (1)

(note that if maxC < y then y 6∈ C). Moreover,

if C1, C2 ∈ T and UC1
6⊆ UC2

, then C1 ∩ UC2
= ∅ (2)

(indeed, if x ∈ C1 ∩ UC2
, then any y ∈ UC1

satisfies that x < y by definition of UC1
and hence y ∈ UC2

by (1), contradicting
the assumption UC1 6⊆ UC2 ). Now, the Axiom of Choice yields a choice function f0 for the family of non-empty subsets X of
P ; that is, f0(X) ∈ X for any such X. Then we define a function f : T → P satisfying that, for each C ∈ T ,

f(C) := f0(UC) ∈ UC ⊆ P \ C if UC 6= ∅ , f(C) := maxC ∈ C ∩ UC if UC = ∅

(note that when UC = ∅, the assumption on (P,≤) being inductively ordered implies that C has an upper bound x ∈ P that
is not strict, which satisfies x ∈ C and must be the maximum element of C). By the construction of f ,

if C1, C2 ∈ T and UC1
= UC2

6= ∅, then f(C1) = f(C2) ∈ UC1
(= UC2

) . (3)

Now, let C0 denote the set of all C ∈ T satisfying the following condition:

(i-C) S ⊆ C and US 6⊆ UC imply f(S) ∈ C.

Then let C denote the set of all C ∈ C0 satisfying the following condition:

(ii-C) C ′ ∈ C0 implies C ⊆ C ′ ∪ UC′ .

Let C∗ :=
⋃
C. We prove that C∗ ∈ C, by verifying the defining conditions of C as follows:

• For (ii-C∗), let C ′ ∈ C0. Then each C ∈ C satisfies C ⊆ C ′ ∪ UC′ by (ii-C), therefore C∗ =
⋃
C ⊆ C ′ ∪ UC′ , as desired.

• We show that C∗ ∈ T , i.e., any x, y ∈ C∗ satisfy x ≤ y or y ≤ x. We can take C,C ′ ∈ C with x ∈ C and y ∈ C ′. Now,
C ⊆ C ′ ∪ UC′ by (ii-C), therefore we have either x, y ∈ C ′ or x ∈ UC′ (hence y < x), implying the claim in any case.

• For (i-C∗), suppose that S ⊆ C∗ and US 6⊆ UC∗ =
⋂

C∈C UC . Then US 6⊆ UC for some C ∈ C. Now, S ∩ UC = ∅ by (2),
while S ⊆ C∗ ⊆ C ∪ UC by (ii-C∗) applied to C ∈ C0, therefore S ⊆ C. Also, by applying (i-C) to S ⊆ C, we have
f(S) ∈ C ⊆ C∗, therefore f(S) ∈ C∗, as desired.

Now, if UC∗ = ∅, then f(C∗) = maxC∗ is a maximal element of P (as otherwise maxC∗ < y for some y ∈ P and hence
y ∈ UC∗ by (1), a contradiction), as desired. Hence, the proof will be completed once we obtain a contradiction assuming
that UC∗ 6= ∅ (hence f(C∗) ∈ UC∗ ). Let u := f(C∗) ∈ UC∗ and C∗∗ := C∗ ∪ {u}; therefore we have u = maxC∗∗ 6∈ C∗,
C∗∗ 6⊆ C∗, and C∗∗ ∈ T as C∗ ∈ T . We prove that C∗∗ ∈ C, by verifying the remaining defining conditions as follows:

• For (i-C∗∗), suppose that S ⊆ C∗∗ and US 6⊆ UC∗∗ . Then S∩UC∗∗ = ∅ by (2) and hence u 6∈ S. This implies that S ⊆ C∗

and hence UC∗ ⊆ US . Now, if US ⊆ UC∗ , then US = UC∗ 6= ∅ and f(S) = f(C∗) = u ∈ C∗∗ by (3); while if US 6⊆ UC∗ ,
then we have f(S) ∈ C∗ ⊆ C∗∗ by applying (i-C∗) to S ⊆ C∗. Hence f(S) ∈ C∗∗ in any case, as desired.

• For (ii-C∗∗), let C ′ ∈ C0. As C∗ ⊆ C ′ ∪ UC′ by (ii-C∗), it suffices to show that u ∈ C ′ ∪ UC′ , or equivalently, u ∈ C ′ if
u 6∈ UC′ . Now, we have UC∗ 6⊆ UC′ as u ∈ UC∗ . Hence C∗ ∩ UC′ = ∅ by (2), while C∗ ⊆ C ′ ∪ UC′ as above, therefore
C∗ ⊆ C ′. Hence u = f(C∗) ∈ C ′ by applying (i-C ′) to C∗ ⊆ C ′, as desired.

However, this fact C∗∗ ∈ C yields a contradiction, as C∗∗ 6⊆ C∗ =
⋃
C. This completes the proof of Theorem 1.1.
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3. Remarks

If we change the family T in our proof to the family of all well-ordered subsets of P , then it yields a proof with weakened
assumption on (P,≤) being inductively ordered where the existence of upper bounds is now assured only for well-ordered
subsets of P . Indeed, now to show that the set C∗ in the proof is a member of T , for any non-empty subset S ⊆ C∗, fix
any C ∈ T with S ∩ C 6= ∅, and take x := min(S ∩ C). For y ∈ S, if y ∈ C then x = min(S ∩ C) ≤ y; while if y 6∈ C then
y ∈ C∗ \ C ⊆ UC from (ii-C∗) and x < y. Hence x = minS, therefore C∗ ∈ T . The proof of C∗∗ ∈ T is almost the same as
the original proof, and the remaining part of the proof is not affected by the change of the definition of T .

We now explain the difference between our proof and that of Lewin [22], mentioned in the Introduction. The outline
of the proof is common to both proofs, i.e., (1) defining some family C of chains and (2) showing that C∗ :=

⋃
C ∈ C and

that C∗∗ := C∗ ∪ {f(C∗)} ∈ C where f(C∗) is a strict upper bound of C∗, yielding a contradiction. However, in contrast to
our proof where the key property C∗ ∈ C in Step (2) is derived directly from the defining conditions for C, Lewin’s proof
required an intermediate step to show some extra property for C that is seemingly stronger than the defining conditions
for C. In detail, the following comparability property was shown in Lewin’s proof: for any two members of C, one of them
is an initial segment of the other. This is analogous to a property of well-ordered sets, and to ensure this property, C was
defined in a way that each member of C should be a well-ordered subset of P . Our main idea is that the full comparability
property is in fact not necessary in the proof. Our new condition (ii-C) can be seen as a weaker variant of the comparability
property (indeed, the condition C ⊆ C ′ ∪ UC′ holds when one of C and C ′ is an initial segment of the other), which (for
C∗ =

⋃
C and C∗∗ = C∗ ∪ {f(C∗)}) can be proved directly without requiring that members of C are well-ordered subsets.
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