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Abstract

In this note, we give a proof of Zorn’s Lemma from Axiom of Choice without transfinite induction
(the essential idea in the first version of this note was the same as [3, Theorem 4.19], but the present
proof is an improvement of the proof in [2]).

Throughout this note, (X, <) denotes an arbitrary non-empty partially ordered set in which every totally
ordered subset has an upper bound. Then Zorn’s Lemma states that such an X always has a maximal
element. In this note, we give a proof of Zorn’s Lemma from Axiom of Choice (in Zermelo—Fraenkel set
theory), without transfinite induction which would be used in a “natural” proof of the claim.

Assume, for the contrary, that X has no maximal elements. Let 7 denote the family of the totally
ordered subsets of X. For any C € T, we define Ug := {z € X |y < x for any y € C}. Now UcNC = 0,
and as an upper bound x € X for C exists and is not maximal, we have () # Uizy € Ug, therefore Uc # 0.
AsU :={SC X |S=Ug for some C € T} is a family of non-empty sets, Axiom of Choice yields its choice
function f; that is, f(Uc) € Ue for every C € T. Let Cy denote the set of all C' € T satisfying the condition
(i-C): S € C and Us € Ug imply f(Ug) € C. Let C denote the set of all C' € Cy satisfying the condition
(ii-C): C" € Cp implies C'\ C' C Uer.

We show that C* := Joe C € C. First, C" € Co implies that C*\ C" C e C\ C' C Uer (from (ii-C)
for each C € C); hence (ii-C*) holds. Secondly, for any =,y € C*, we have x € C for some C € C. Now if
y € C, then we have z <y or y <z as C € T; while if y & C, then we have y € C*\ C C U¢ from (ii-C*)
and therefore z < y. Hence we have x < y or y < z in any case, therefore C* € T. Moreover, when S C C*
and Ug € Ug~ = nCeC Uc, we have Ug & Ue for some C' € C, therefore x ¢ Ue for some x € Ug. Now for
any y € S, we have y < x, therefore y & Uc. Hence SNUc =0. As S\ C C C*\ C C U¢ from (ii-C*), we
have S C C. Now from (i-C), we have f(Ug) € C C C*. Hence (i-C*) holds. Summarizing, we have C* € C.
Let u := f(Uc~) and C** := C* U {u}.

As w = maxC** and C* € T, we have C** € T. When S C C** and Ug Z Ug++, we have u ¢ S (as
otherwise we would have Us = Uy,) = Uc»+) and hence S C C* and Ug+ C Ug. Now if Ug C Ug~, then we
have Us = Ug~ and f(Usg) = f(Uc~) = u € C**. On the other hand, if Us € Ug~, then we have f(Ug) €
C* C C** from (i-C*). Hence we have f(Ug) € C** in any case, therefore (i-C**) holds and C** € Cy. As
C** ¢ C*, we have C** & C, therefore (ii-C**) fails and C**\ C" € Ue» for some C’ € Cy. From (ii-C*), we
have C* \ C" C U, therefore u ¢ C' and u & Ucr (as otherwise ) # (C**\ C') \ Uer = (C*\ C")\ Ucr = 0,
a contradiction). This and the fact u € Ug~ imply that Ugs € Uer and C* N U = B, therefore C* C C'.
Now by applying (i-C’) to C* C C’, it follows that u = f(Uc~) € C’, a contradiction.

This completes the proof of Zorn’s Lemma.

Appendix: A proof using transfinite induction

In this appendix, for the sake of comparison, we describe a proof of Zorn’s Lemma from Axiom of Choice
using transfinite induction. First we clarify the statement of the principle for “definition by transfinite
recursion” (see e.g., [1, Chapter I, Theorem 9,3]):



Theorem 1. Let p(z,y) be a formula (in Zermelo—Fraenkel set theory) with free variables x,y satisfy-
ing VeIlyp(x,y). Then there exists a formula ®(x,y) with free variables x,y satisfying the following two
conditions;

1. Vz((x € ON — Jly®(x,y)) A (—z € ON — —Typ(x,y)));
2. Vx(x € ON = Vy, 2(y = D [ Ap(y, 2) — @(x, 2))),

where “r € ON” is an abbreviation of “x is an ordinal number” and “® [, ” is an abbreviation of the set
{{a,b) | a € x A ®(a,b)} (with {a,b) denoting the ordered pair of a and b).

Intuitively, the theorem means that, if we would like to define a “function” ® with domain consisting of
all ordinal numbers (the whole of which is never a set) in such a way that the value of ® at each ordinal
number « is determined by a given rule from the values of ® at ordinal numbers less than «, then there
indeed exists such a “function” ®. Note that this is a theorem of ZF set theory and does not depend on
Axiom of Choice.

Now we give a proof of Zorn’s Lemma from Axiom of Choice using Theorem 1 (as well as transfinite
induction). Let X # 0 be a partially ordered set appeared in the statement of Zorn’s Lemma. Assume,
for the contrary, that X has no maximal elements. Then, for each non-empty subset C' of X which is
isomorphic to an ordinal number (hence is totally ordered), it follows from Axiom of Choice that there
exists a distinguished upper bound b¢ of C with b € X \ C.

To apply Theorem 1, first we define a formula ¢(z,y) in the following manner, where we fix an element
a € X throughout the proof:

o If =0 (=0), then let p(z,y) mean that y = a.

o If z is a function from an ordinal number o > 0 to X which is an isomorphism (between partially
ordered sets) onto the image Im(x) of x, then let ¢(z,y) mean that y = biy(,) (note that Im(z) is
isomorphic to the non-empty ordinal number «, therefore by, (,) is indeed defined).

o Otherwise, let ¢(z,y) mean that y = 0.

This formula ¢(z,y) satisfies the hypothesis of Theorem 1, therefore a formula ®(z,y) as in the theorem
exists. Now we have the following lemma:

Lemma 1. Let z be an ordinal number, and let &’ be the unique element satisfying ®(x,z’).
1. We have 2’ € X.
2. If y <z and ®(y,y’), theny’ <z’ in X.

Proof. We prove the claim by transfinite induction on z. First, if £ = 0, then it follows from the definition
of the formula ¢ that 2’ = a, therefore the specified conditions are satisfied. Secondly, suppose that z > 0.
Then, by the hypothesis of the transfinite induction, the set ® [, in the statement of Theorem 1 is an
isomorphism from z to a subset of X, say, C' (note that x is totally ordered). Now by the definitions of ®
and ¢, it follows that &’ = b, therefore the specified conditions are satisfied for x (the second condition
follows from the property that bo € X \ C is an upper bound of C'). Hence the claim holds. O

By the second property shown in Lemma 1, for each element v € X, there exists at most one ordinal
number z satisfying ®(z,v). Let X’ denote the subset of X defined in such a way that v € X’ if and only
if v € X and ®(z,v) for some (or equivalently, a unique) ordinal number z. By the Axiom Schema of
Replacement applied to the set X’ and the formula ®'(z,y) := ®(y, ), there exists a set Y for which we
have y € Y if y is an ordinal number and the unique element y’ satisfying ®(y,y’) belongs to X’. Now by
the first property shown in Lemma 1, the set Y contains every ordinal number. However, this contradicts
Burali-Forti Paradox (which states that there exist no sets containing all ordinal numbers). Hence X should
have a maximal element, concluding the proof of Zorn’s Lemma.
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