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Abstract

In this note, we give a proof of Zorn’s Lemma from Axiom of Choice without transfinite induction
(the essential idea in the first version of this note was the same as [4, Theorem 4.19], but the present
proof is an improvement of the proof in [2]).

Notice: The peer-reviewed journal version of the proof (where the proof has been improved) is now available
[3]. Please officially refer to the journal version (while I keep this note for reference purpose).

Throughout this note, (X,≤) denotes an arbitrary non-empty partially ordered set in which every totally
ordered subset has an upper bound. Then Zorn’s Lemma states that such an X always has a maximal
element. In this note, we give a proof of Zorn’s Lemma from Axiom of Choice (in Zermelo–Fraenkel set
theory), without transfinite induction which would be used in a “natural” proof of the claim.

Assume, for the contrary, that X has no maximal elements. Let T denote the family of the totally
ordered subsets of X. For any C ∈ T , we define UC := {x ∈ X | y < x for any y ∈ C}. Now UC ∩ C = ∅,
and as an upper bound x ∈ X for C exists and is not maximal, we have ∅ 6= U{x} ⊆ UC , therefore UC 6= ∅.
As U := {S ⊆ X | S = UC for some C ∈ T } is a family of non-empty sets, Axiom of Choice yields its choice
function f ; that is, f(UC) ∈ UC for every C ∈ T . Let C0 denote the set of all C ∈ T satisfying the condition
(i-C): S ⊆ C and US 6⊆ UC imply f(US) ∈ C. Let C denote the set of all C ∈ C0 satisfying the condition
(ii-C): C ′ ∈ C0 implies C \ C ′ ⊆ UC′ .

We show that C∗ :=
⋃

C∈C C ∈ C. First, C ′ ∈ C0 implies that C∗ \C ′ ⊆
⋃

C∈C C \C ′ ⊆ UC′ (from (ii-C)
for each C ∈ C); hence (ii-C∗) holds. Secondly, for any x, y ∈ C∗, we have x ∈ C for some C ∈ C. Now if
y ∈ C, then we have x ≤ y or y ≤ x as C ∈ T ; while if y 6∈ C, then we have y ∈ C∗ \ C ⊆ UC from (ii-C∗)
and therefore x < y. Hence we have x ≤ y or y ≤ x in any case, therefore C∗ ∈ T . Moreover, when S ⊆ C∗

and US 6⊆ UC∗ =
⋂

C∈C UC , we have US 6⊆ UC for some C ∈ C, therefore x 6∈ UC for some x ∈ US . Now for
any y ∈ S, we have y < x, therefore y 6∈ UC . Hence S ∩ UC = ∅. As S \ C ⊆ C∗ \ C ⊆ UC from (ii-C∗), we
have S ⊆ C. Now from (i-C), we have f(US) ∈ C ⊆ C∗. Hence (i-C∗) holds. Summarizing, we have C∗ ∈ C.
Let u := f(UC∗) and C∗∗ := C∗ ∪ {u}.

As u = maxC∗∗ and C∗ ∈ T , we have C∗∗ ∈ T . When S ⊆ C∗∗ and US 6⊆ UC∗∗ , we have u 6∈ S (as
otherwise we would have US = U{u} = UC∗∗) and hence S ⊆ C∗ and UC∗ ⊆ US . Now if US ⊆ UC∗ , then we
have US = UC∗ and f(US) = f(UC∗) = u ∈ C∗∗. On the other hand, if US 6⊆ UC∗ , then we have f(US) ∈
C∗ ⊆ C∗∗ from (i-C∗). Hence we have f(US) ∈ C∗∗ in any case, therefore (i-C∗∗) holds and C∗∗ ∈ C0. As
C∗∗ 6⊆ C∗, we have C∗∗ 6∈ C, therefore (ii-C∗∗) fails and C∗∗ \ C ′ 6⊆ UC′ for some C ′ ∈ C0. From (ii-C∗), we
have C∗ \C ′ ⊆ UC′ , therefore u 6∈ C ′ and u 6∈ UC′ (as otherwise ∅ 6= (C∗∗ \C ′) \ UC′ = (C∗ \C ′) \ UC′ = ∅,
a contradiction). This and the fact u ∈ UC∗ imply that UC∗ 6⊆ UC′ and C∗ ∩ UC′ = ∅, therefore C∗ ⊆ C ′.
Now by applying (i-C ′) to C∗ ⊆ C ′, it follows that u = f(UC∗) ∈ C ′, a contradiction.

This completes the proof of Zorn’s Lemma.
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Appendix: A proof using transfinite induction
In this appendix, for the sake of comparison, we describe a proof of Zorn’s Lemma from Axiom of Choice
using transfinite induction. First we clarify the statement of the principle for “definition by transfinite
recursion” (see e.g., [1, Chapter I, Theorem 9,3]):

Theorem 1. Let ϕ(x, y) be a formula (in Zermelo–Fraenkel set theory) with free variables x, y satisfy-
ing ∀x∃!yϕ(x, y). Then there exists a formula Φ(x, y) with free variables x, y satisfying the following two
conditions;

1. ∀x((x ∈ ON → ∃!yΦ(x, y)) ∧ (¬x ∈ ON → ¬∃yϕ(x, y)));

2. ∀x(x ∈ ON → ∀y, z(y = Φ�x ∧ϕ(y, z) → Φ(x, z))),

where “x ∈ ON” is an abbreviation of “x is an ordinal number” and “Φ �x” is an abbreviation of the set
{〈a, b〉 | a ∈ x ∧ Φ(a, b)} (with 〈a, b〉 denoting the ordered pair of a and b).

Intuitively, the theorem means that, if we would like to define a “function” Φ with domain consisting of
all ordinal numbers (the whole of which is never a set) in such a way that the value of Φ at each ordinal
number α is determined by a given rule from the values of Φ at ordinal numbers less than α, then there
indeed exists such a “function” Φ. Note that this is a theorem of ZF set theory and does not depend on
Axiom of Choice.

Now we give a proof of Zorn’s Lemma from Axiom of Choice using Theorem 1 (as well as transfinite
induction). Let X 6= 0 be a partially ordered set appeared in the statement of Zorn’s Lemma. Assume,
for the contrary, that X has no maximal elements. Then, for each non-empty subset C of X which is
isomorphic to an ordinal number (hence is totally ordered), it follows from Axiom of Choice that there
exists a distinguished upper bound bC of C with bC ∈ X \ C.

To apply Theorem 1, first we define a formula ϕ(x, y) in the following manner, where we fix an element
a ∈ X throughout the proof:

• If x = 0 (= ∅), then let ϕ(x, y) mean that y = a.

• If x is a function from an ordinal number α > 0 to X which is an isomorphism (between partially
ordered sets) onto the image Im(x) of x, then let ϕ(x, y) mean that y = bIm(x) (note that Im(x) is
isomorphic to the non-empty ordinal number α, therefore bIm(x) is indeed defined).

• Otherwise, let ϕ(x, y) mean that y = 0.

This formula ϕ(x, y) satisfies the hypothesis of Theorem 1, therefore a formula Φ(x, y) as in the theorem
exists. Now we have the following lemma:

Lemma 1. Let x be an ordinal number, and let x′ be the unique element satisfying Φ(x, x′).

1. We have x′ ∈ X.

2. If y < x and Φ(y, y′), then y′ < x′ in X.

Proof. We prove the claim by transfinite induction on x. First, if x = 0, then it follows from the definition
of the formula ϕ that x′ = a, therefore the specified conditions are satisfied. Secondly, suppose that x > 0.
Then, by the hypothesis of the transfinite induction, the set Φ �x in the statement of Theorem 1 is an
isomorphism from x to a subset of X, say, C (note that x is totally ordered). Now by the definitions of Φ
and ϕ, it follows that x′ = bC , therefore the specified conditions are satisfied for x (the second condition
follows from the property that bC ∈ X \ C is an upper bound of C). Hence the claim holds.

By the second property shown in Lemma 1, for each element v ∈ X, there exists at most one ordinal
number x satisfying Φ(x, v). Let X ′ denote the subset of X defined in such a way that v ∈ X ′ if and only
if v ∈ X and Φ(x, v) for some (or equivalently, a unique) ordinal number x. By the Axiom Schema of
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Replacement applied to the set X ′ and the formula Φ′(x, y) := Φ(y, x), there exists a set Y for which we
have y ∈ Y if y is an ordinal number and the unique element y′ satisfying Φ(y, y′) belongs to X ′. Now by
the first property shown in Lemma 1, the set Y contains every ordinal number. However, this contradicts
Burali–Forti Paradox (which states that there exist no sets containing all ordinal numbers). Hence X should
have a maximal element, concluding the proof of Zorn’s Lemma.
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