超限帰納法抜きで選択公理から Zorn の補題を証明してみた

縫田 光司

2011年11月13日(初版)、2024年7月12日(第7版)

概要

このノートでは、超限帰納法を使わずに選択公理から Zorn の補題を導く証明を与える(なお、このノートの初版での証明のアイデアは [4, Theorem 4.19] と同じであったが、現在の証明は [2] の改良である)。この証明の特徴として、[2] の証明などで用いられていた整列順序の概念すら必要とせず、Zorn の補題の主張が理解できる程度の半順序集合に関する知識(と、選択公理が何であるかの知識)があれば理解できる。

選択公理から Zorn の補題を(集合論の Zermelo-Fraenkel 公理系の下で)証明する際、「自然な」方針では通常は超限帰納法のお世話になるのだが、ここでは超限帰納法を使わない証明(筆者の論文 [3])を紹介する。

記号と用語の説明

このノートを通して、 (X, \leq) を半順序集合とする。すなわち、 \leq は集合 X 上の二項関係* 1 であり、(I) どの $x \in X$ についても $x \leq x$ である、(II) どの $x, y \in X$ についても、もし $x \leq y$ かつ $y \leq x$ であれば x = y でもある、(III) どの $x, y, z \in X$ についても、もし $x \leq y$ かつ $y \leq z$ であれば $x \leq z$ でもある、という三つの条件を満たす。 $\lceil x \leq y$ かつ $x \neq y$ 」のことを x < y で表す。

X の部分集合 C が X の鎖であるとは、どの $x,y \in C$ についても x と y が比較可能である(つまり、 $x \leq y$ もしくは $y \leq x$ である)ことと定める。定義より、鎖 C の部分集合 C' もまた鎖である*2。

 $x \in X$ が鎖 $C \subseteq X$ の上界であるとは、どの $y \in C$ についても $y \le x$ が成り立つことと定める。また、 $x \in X$ が鎖 $C \subseteq X$ の真の上界であるとは、どの $y \in C$ についても y < x が成り立つことと定める。なお、後者の条件は「x が C の上界であり、かつ $x \notin C$ である」ことと同値である*3。

半順序集合 (X, \leq) が**帰納的**であるとは、X の鎖 C はどれも X の中に上界をもつことと定める。(特にこのとき、空集合 $C := \emptyset$ が X の鎖であることから、X にはその上界が存在し、したがって X は空でないことを注意しておく。)

 $x \in X$ が極大であるとは、x < y を満たす元 $y \in X$ は存在しないことと定める。また、鎖 $C \subseteq X$ の元 $x \in C$ が C の最大元である(この元を $\max C$ で表す)とは、どの $y \in C$ についても $y \le x$ である、言い換えると、x が C の上界であることと定める。

これらの定義のもと、Zorn の補題とは

どの帰納的な半順序集合 (X,\leq) も極大元をもつ

という主張である。

 $^{^{*1}}$ X の元 x,y が与えられると、「 $x \leq y$ 」という関係が成り立つか否かが定まる状況にある、ということである。

 $^{^{*2}}$ $x,y\in C'$ について、 $C'\subseteq C$ であることから $x,y\in C$ でもあり、鎖 C の定義より x と y は比較可能である。

^{*3} x が C の真の上界であるとき、もし $x \in C$ であるとすると、 $y := x \in C$ について条件 y < x が成り立たず矛盾する。逆に 「 」 部の条件が成り立つとき、どの $y \in C$ についても、 $y \le x$ かつ $y \ne x$ ($x \not\in C$ であるので)、したがって y < x となる。

Zorn の補題の証明

X の鎖全体の集合を T で表す。また、鎖 $C \in T$ について、

$$\overline{U}_C := \{x \in X : x \text{ は } C \text{ の上界}\}, U_C := \{x \in X : x \text{ は } C \text{ の真の上界}\} = \overline{U}_C \setminus C$$

と定める。すると、C の最大元 $\max C$ が存在すれば $\overline{U}_C = U_C \cup \{\max C\}$ であり、そうでなければ $\overline{U}_C = U_C$ である*4。このことから、

もし
$$x \in \overline{U}_C$$
と $y \in X$ が $x < y$ を満たせば、 $y \in U_C$ である*5。 (1)

さらに、

鎖
$$C_1, C_2 \in \mathcal{T}$$
 について、 $U_{C_1} \nsubseteq U_{C_2}$ であれば $C_1 \cap \overline{U}_{C_2} = \emptyset$ が成り立つ*6。 (2)

さて、<u>選択公理により</u>、X の空でない部分集合の族の選択関数 f_0 が存在する。すなわち、X の空でない部分集合 Y について常に $f_0(Y) \in Y$ が成り立つ。これを踏まえて、関数 $f: \mathcal{T} \to X$ を、鎖 $C \in \mathcal{T}$ について以下で定義する。

$$f(C) := \begin{cases} f_0(U_C) \in U_C \subseteq X \setminus C & (U_C \neq \emptyset \text{ のとき}) \\ \max C \in C \cap \overline{U}_C & (U_C = \emptyset \text{ のとき}) \end{cases}$$

 $(U_C=\emptyset$ の場合には、 (X,\leq) が帰納的という仮定から存在が保証される C の上界は実際には C の元でもあり、したがって $\max C$ が存在する。)この構成より、

鎖
$$C_1,C_2\in\mathcal{T}$$
 について、 $U_{C_1}=U_{C_2}\neq\emptyset$ であれば $f(C_1)=f(C_2)\in U_{C_1}\;(=U_{C_2})$ が成り立つ。 (3)

 \mathcal{T} の部分集合 \mathcal{C}_0 を、以下の条件 (i- \mathcal{C}) を満たす鎖 $\mathcal{C} \in \mathcal{T}$ 全体の集合と定める。

(i-C) C の部分集合 S について、 $U_S \not\subseteq U_C$ であれば $f(S) \in C$ が成り立つ。

そして、 \mathcal{C}_0 の部分集合 \mathcal{C} を、以下の条件 (ii- \mathcal{C}) を満たす鎖 $\mathcal{C} \in \mathcal{C}_0$ 全体の集合と定める。

(ii-C) どの $C' \in C_0$ についても $C \subseteq C' \cup U_{C'}$ が成り立つ。

 $C^* := \bigcup C$ と定める。このとき $C^* \in C$ である。実際、以下のように C^* は C の定義の各条件を満たす。

- (ii- C^*): $C' \in \mathcal{C}_0$ とする。各 $C \in \mathcal{C}$ について条件 (ii-C) より $C \subseteq C' \cup U_{C'}$ であり、したがって $C^* = \bigcup \mathcal{C} \subseteq C' \cup U_{C'}$ である。
- $C^* \in \mathcal{T}$: $x,y \in C^*$ とする。 C^* の定義より、ある $C,C' \in \mathcal{C}$ について $x \in C$ かつ $y \in C'$ となる。条件 (ii-C) より $C \subseteq C' \cup U_{C'}$ であるので、 $x,y \in C'$ であるか(すると $C' \in \mathcal{T}$ より x,y は比較可能である)、もしくは $x \in U_{C'}$ である(すると y < x である)。いずれにしても $x \in Y$ は比較可能である。
- (i- C^*): $S \subseteq C^*$ かつ $U_S \not\subseteq U_{C^*} = \bigcap_{C \in \mathcal{C}} U_C$ とする *7 。 このときある $C \in \mathcal{C}$ について $U_S \not\subseteq U_C$ である。 すると性質 (2) より $S \cap U_C = \emptyset$ であり、一方で条件 (ii- C^*) を $C \in \mathcal{C}_0$ に適用して $S \subseteq C^* \subseteq C \cup U_C$

 $^{^{*4}}$ 元 $_x$ が $\overline{U}_C\setminus U_C$ に属することは、 $_x$ が C の上界でありかつ $_x$ \in C であること、すなわち $_x$ = $\max C$ と同値である。

 $^{^{*5}}$ どの $z \in C$ についても $z \le x < y$ より $z \le y$ である。一方、もし $y \in C$ とすると $y \le x$ となるが、これは x < y と矛盾する。

^{*6} もし $x\in C_1\cap\overline{U}_{C_2}$ とすると、どの $y\in U_{C_1}$ についても、 U_{C_1} の定義より x< y となり、したがって性質 (1) より $y\in U_{C_2}$ となる。これは $U_{C_1}\not\subseteq U_{C_2}$ と矛盾する。

^{*7} 後半の等号については、 C^* が C たちの和集合であることから、「どの $y \in C^*$ についても y < x」は「どの C についても 『どの $y \in C$ についても y < x』」と同値である。

が得られる。これらを合わせると $S\subseteq C$ となる。この S に条件 (i-C) を適用すると $f(S)\in C\subseteq C^*$ となり、 $f(S)\in C^*$ が成り立つ。

さて、もし $U_{C^*}=\emptyset$ であれば、 $f(C^*)=\max C^*$ は X の極大元であり(もし $\max C^* < y$ を満たす元 y があれば、性質(1)より $y\in U_{C^*}$ となってしまうため)、主張が成り立つ。あとは $U_{C^*}\neq\emptyset$ (したがって、 $f(C^*)\in U_{C^*}$)と仮定して矛盾を導けばよい。 $u:=f(C^*)\in U_{C^*}$ および $C^{**}:=C^*\cup\{u\}$ と定める。 $u=\max C^{**}\not\in C^*$ かつ $C^{**}\not\in C^*$ であり、 C^* と同じく C^{**} も鎖である*8。さらに $C^{**}\in C$ である。実際、以下のように C^{**} は C の定義の残る条件を満たす。

- (i- C^{**}): $S \subseteq C^{**}$ かつ $U_S \not\subseteq U_{C^{**}}$ とする。性質 (2) より $S \cap \overline{U}_{C^{**}} = \emptyset$ であり、 $u = \max C^{**} \in \overline{U}_{C^{**}}$ より $u \not\in S$ である。よって $S \subseteq C^*$ 、したがって $U_{C^*} \subseteq U_S$ となる*9。ここで、 $U_S \subseteq U_{C^*}$ の場合には $U_S = U_{C^*} \neq \emptyset$ となるので性質 (3) より $f(S) = f(C^*) = u \in C^{**}$ となり、一方で $U_S \not\subseteq U_{C^*}$ の場合には条件 (i- C^*) を $S \subseteq C^*$ に適用して $f(S) \in C^* \subseteq C^{**}$ となる。いずれにしても $f(S) \in C^*$ である。
- (ii- C^{**}): $C' \in \mathcal{C}_0$ とする。条件(ii- C^*)より $C^* \subseteq C' \cup U_{C'}$ である。あとは $u \in C' \cup U_{C'}$ 、言い換えると、もし $u \not\in U_{C'}$ であれば $u \in C'$ となることを示せばよい。この状況では、 $u \in U_{C^*}$ より $U_{C^*} \not\subseteq U_{C'}$ であるので、性質(2)より $C^* \cap U_{C'} = \emptyset$ となるが、一方で上記のように $C^* \subseteq C' \cup U_{C'}$ であったから、 $C^* \subseteq C'$ となる。よって、条件(i-C')を $C^* \subseteq C'$ に適用して、 $u = f(C^*) \in C'$ となる。

しかし、この事実 $C^{**} \in \mathcal{C}$ は $C^{**} \not\subseteq C^* = \bigcup \mathcal{C}$ であることと矛盾する。これで証明が完了した。

おまけ:超限帰納法を用いた証明

このおまけでは、比較のために、超限帰納法を用いて選択公理から Zorn の補題を導く証明を与える。最初に、超限再帰的定義に関する原理を述べておく(例えば [1, 第 I 章定理 9.3] を参照)。

定理 1. $\varphi(x,y)$ を(Zermelo–Fraenkel 集合論における)式で自由変数 x と y をもち、 $\forall x \exists ! y \varphi(x,y)$ を満たすものとする。このとき、自由変数 x と y をもつ式 $\Phi(x,y)$ で以下の二つの条件を満たすものが存在する。

- 1. $\forall x ((x \in \mathbf{ON} \to \exists! y \Phi(x, y)) \land (\neg x \in \mathbf{ON} \to \neg \exists y \varphi(x, y)))$
- 2. $\forall x (x \in \mathbf{ON} \to \forall y, z (y = \Phi \upharpoonright_x \land \varphi(y, z) \to \Phi(x, z)))$

ただし、「 $x \in \mathbf{ON}$ 」は「x は順序数」の略記とし、「 Φ \upharpoonright_x 」は集合 $\{\langle a,b\rangle \mid a \in x \land \Phi(a,b)\}$ ($\langle a,b\rangle$ は a と b の順序対)の略記とする。

この定理の直感的な意味は以下の通りである:順序数全体(これは集合をなさないのであるが)で定義される「関数」 Φ を得たいとき、順序数 α における値を α より小さな順序数における値から定める方法を指定すれば、その条件を満たす「関数」 Φ が確かに存在する。この定理は ZF 集合論における定理であり、選択公理は用いていないことを注意しておく。

定理 1 (と超限帰納法)を用いて、選択公理から Zorn の補題を証明する。 $X \neq 0$ (= \emptyset)を、Zorn の補題の主張に現れる半順序集合とする。背理法の仮定として、X は極大元をもたないと仮定する。すると、X の空でな

^{**} C^{**} の元 x と y が比較可能であることを示す際に、x か y の少なくとも一方が $u=\max C^{**}$ であれば $\max C^{**}$ の定義より x と y は確かに比較可能であり、そうでなければ $x,y\in C^*$ となるので鎖 C^* の性質より x と y はやはり比較可能である。

 $^{^{*9}}$ S の元はどれも C^* の元でもあるので、「どの $y \in C^*$ についても y < x」であれば「どの $y \in S$ についても y < x」でもある。

い部分集合 C のうち、ある順序数と同型な(特に全順序集合である)ものの各々について、選択公理を用いてC の上界 $b_C \in X \setminus C$ を一つずつ選ぶことができる。

定理 1 を適用すべく、まず X の元 a を一つ固定しておき、式 $\varphi(x,y)$ を以下の要領で定義する。

- x = 0 のとき、 $\varphi(x, y)$ は y = a を意味するように定める。
- x がある順序数 $\alpha>0$ から X への関数であって像 $\mathrm{Im}(x)$ への(半順序集合としての)同型写像であるとき、 $\varphi(x,y)$ は $y=b_{\mathrm{Im}(x)}$ を意味するように定める($\mathrm{Im}(x)$ は空でない順序数 α と同型なので、 $b_{\mathrm{Im}(x)}$ が確かに定義されることを注意しておく)。
- それ以外のとき、 $\varphi(x,y)$ は y=0 を意味するように定める。

この式 $\varphi(x,y)$ は定理 1 の前提を満たすので、定理の主張にあるような式 $\Phi(x,y)$ が存在する。ここで以下の補題が成り立つ。

補題 1. x を順序数とし、x' を $\Phi(x,x')$ が成り立つ唯一の元とする。このとき、

- 1. $x' \in X$ である。
- 2. y < x かつ $\Phi(y, y')$ が成り立つならば、X において y' < x' である。

証明. x に関する超限帰納法を用いて証明する。まず、x=0 のときは、 φ の定義より x'=a となるので、件の条件が成り立つ。次に x>0 のときを考える。超限帰納法の仮定より、定理 1 の主張に現れる集合 $\Phi \upharpoonright_x$ は x から X のある部分集合 C への同型写像となる(x は全順序集合であることを注意しておく)。このとき Φ と φ の定義より $x'=b_C$ となり、したがって件の条件は x に関しても成り立つ(二つ目の条件については、 $b_C \in X \setminus C$ が C の上界であることから導かれる)。以上より主張が成り立つ。

補題 1 の二つ目の性質より、各 $v\in X$ について、 $\Phi(x,v)$ を満たす順序数 x は高々一つしか存在しない。X の部分集合 X' を、ある(一意に定まる)順序数 x について $\Phi(x,v)$ が成り立つような $v\in X$ 全体の集合として定める。置換公理を集合 X' と式 $\Phi'(x,y):=\Phi(y,x)$ に適用すると、順序数 y のうち、 $\Phi(y,y')$ を満たす唯一の y' が X' に属するような y をすべて要素にもつ集合 Y の存在が示される。ここで補題 1 の一つ目の性質より、この集合 Y はすべての順序数を要素にもつことになる。しかし、これは Burali—Forti の逆理(すなわち、すべての順序数を要素にもつ集合は存在しない、という定理)に矛盾する。したがって背理法により、X は極大元をもつ。以上で X0 の補題が証明された。

参考文献

- [1] ケネス・キューネン (著)、藤田博司 (訳)、『集合論 独立性証明への案内』、日本評論社、2008 年
- [2] J. Lewin, "A Simple Proof of Zorn's Lemma", Amer. Math. Monthly 98(4) (1991), 353–354
- [3] K. Nuida, "A Simple and Elementary Proof of Zorn's Lemma", Discrete Math. Lett. 13 (2024), 108–110
- [4] H. Rubin, J. E. Rubin, "Equivalents of the Axiom of Choice, II", Second Edition, Studies in Logic and the Foundations of Mathematics vol.116, North-Holland, 1985