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Abstract

Let G = (V,E) be a graph, and w : V → Q>0 be a positive weight function on the vertices of G. For every
subset X of V , let w(X) =

∑
v∈G

w(v). A non-empty subset S ⊂ V (G) is a weighted safe set if, for every
component C of the subgraph induced by S and every component D of G \ S, we have w(C) ≥ w(D) whenever
there is an edge between C and D.

In this paper we show that the problem of computing the minimum weight of a safe set is NP-hard for trees,
even if the underlining tree is restricted to be a star, but it is polynomially solvable for paths. Then we define
the concept of a parameterized infinite family of “proper central subgraphs” on trees, whose polar ends are the
minimum-weight connected safe sets and the centroids. We show that each of these central subgraphs includes
a centroid. We also give a linear-time algorithm to find all of these subgraphs on unweighted trees.

1 Introduction

We can regard a network as a mature community on a large scale; more precisely, it consists of a collection of small
communities with some mutual connections. In such a network, it is important to gain control of a “majority”
so that we can control the network consensus. On the other hand, for those who are concerned about a network
security, they would think that a network where we can easily get a majority is unstable and it has a risky structure
in view of network vulnerability.

Motivated by these observations, we would like to give some appropriate definition for gaining a majority in a
given network. As a network model, we here consider this problem on simple undirected graphs with some given
weight on each vertex. Note that each weight on a vertex represents certain measure for importance in the network.

We use [4] for terminology and notation not defined here. Only finite, simple graphs are considered. For a
graph G = (V,E), let δ(G) be the minimum degree of G, and α(G) be the independence number of G. The order
and size of G are denoted by n and m, respectively. The subgraph of G induced by a subset S ⊆ V (G) is denoted
by G[S]. When A and B are vertex-disjoint subgraphs of G, the set of edges that join some vertex of A and some
vertex of B is denoted by E(A,B).

Let G = (V (G), E(G)) be a graph and ω be a weighted function on V (G) such that ω : V (G) → R+. For a

vertex subset S of V (G), let ω(S) :=
∑

v∈S

ω(v). We often abuse notations for vertex subsets and subgraphs. So, for
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∗∗Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13–15, Budapest, H-1053, Hungary, and
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a subgraph H of G, we write ω(H) for ω(V (H)) (thus, ω(H) :=
∑

v∈V (H)

ω(v)).

If a connected subgraph H of G satisfies ω(G) ≦ 2ω(H) then no one may object to considering that the
subnetwork H plays a majority role in G. However, one might come up with the following natural question: Do
we always need to get more than half weight for gaining the network majority?

To answer this question, Let us consider a weighted graph G with a weight function ω on V (G), where we will
always associate some given network N with (G,ω). (So we often identify/abuse notations (G,ω) and N .) In view
of graph topology, it may be natural to assume that the following three properties hold for N :

(1) For any two vertices p, q in G, any communication between p and q is conducted on a path joining p and q

in G.

(2) For a vertex subset S of G, when we consider the community associated with S on N , as the consensus of S,
S can block any communication for any two vertices on V (G) \ S from two distinct components of V (G) \ S
by cuting off the paths on S joining them.

(3) For any two communities S1, S2 in G, S1 and S2 can form an alliance if and only if there is at least one safe
way of communication (i.e. a path whose every vertex is in some communities which collude with either S1

or S2) between any pair of vertices in V (S1) ∪ V (S2).

For example, let us observe a weighted path Pn = v1v2 . . . v3n, where ω(vi) = 1 for all i. By taking a subpath
X = vn+1vn+2 . . . v2n, we see that there is no component in P \ V (X) whose weight sum exceeds the weight sum
of X. Hence, under the above assumption, it would be appropriate for us to consider that X attains a majority
role for any community on P . Hence we can conclude that the answer to the above question is negative. Moreover,
to formulate our problem, we must consider the following basic question: How can we calculate the minimum
weight of a subnetwork which attains a majority role for a given network? To answer this question, let us focus
on a known concept called safe sets, which was introduced by Fujita, MacGillivray and Sakuma [9] for unweighted
graphs. In this paper, we will generalize this concept to the weighted version in a natural manner and give some
basic properties along this line.

A non-empty subset S ⊆ V (G) is a safe set if, for every component C of G[S] and every component D of
G \ S, we have |C| ≥ |D| whenever E(C,D) 6= ∅. If G[S] is connected, then S is called a connected safe set. The
minimum cardinality among all safe sets (resp. connected safe sets) of G is called the safe number (resp. connected
safe number) of G and is denoted by s(G) (resp. cs(G)).

In this paper, we extend this concept on graphs in which each vertex has a positive weight. Formally, let
G = (V,E) be a graph, and w : V → Q>0 be a positive weight function on the vertices of G. A non-empty subset
S ⊂ V (G) is a weighted safe set if, for every component C of the subgraph induced by S and every component D
of G \S, we have w(C) ≥ w(D) whenever E(C,D) 6= ∅. If G[S] is connected, then S is called a weighted connected

safe set. The minimum weight among all weighted safe sets (resp. connected safe sets) of (G,w) is called the safe

number (resp. the connected safe number) of (G,w) and is denoted by s(G,w) (resp. cs(G,w)).

As we mentioned before, the concept of (weighted) safe set can be thought as a suitable measure of network
vulnerability, and hence it has some clear relation to other such graph invariants. For example, the graph integrity,
a well studied measure [1, 2, 3, 14] of reliability of a graph network (G,w), is defined as

I(G) = min
S⊆V (G)

{

w(S) + max{w(H) : H is a component of G[V (G) \ S]}
}

.

From the definitions of the graph integrity and the safe number, we have the following:

Proposition 1. For every graph network (G,w), the inequality I(G) ≦ 2 s(G,w) holds. Furthermore, if a set

S(⊆ V (G)) attains the number I(G) and the induced subgraph G[S] is connected, then we also have the inequality

cs(G,w) ≦ I(G) ≦ 2 cs(G,w).

We show that a minimum safe set on weighted trees is also an appropriate indicator to express a central
subgraph. We can obtain infinitely many scalings of the concept of “central subgraph”, each of these includes a
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centroid. Moreover, if the vertex-weight function is uniform, then it is also included in a minimum safe set. The
betweenness centrality of a vertex (an edge) is defined as the number of shortest paths that pass through that
vertex (edge). In 1977, Linton [10] defined this concept and Girvan-Newman [11] extend the definition to the case
of edges. Recently, the clustering of networks is in the focus of attention, many researches have proposed algorithms
for it. Among them, some popular clustering algorithms typified by Girvan-Newman [11] tend to fail to extract
communities with high betweenness centrality in a given network. (For example, some road traffic networks surely
have such communities.) On the other hand, our concept of “central subgraphs” and algorithms to find them may
be useful for extracting such communities on given networks. Newman [13] also introduced modularity clustering
which is a major tool for detecting communities in a network. However, for finding maximum modularity, we
need to spend much time. Actually, to the best of our knowledge, the fastest known algorithm for the modularity
maximization problem on unweighted trees, developed by Dinha and Thai [6], runs in O(n5) steps. On the other
hand, our algorithm can find any of the central subgraphs defined above in linear time. The substantial improvement
(to optimal) in the order of running time indicates an advantage of our algorithm.

The paper is organized as follows.

In Section 2, we consider the time complexity of finding a minimum connected or non-connected safe set in a
weighted tree. We show that this problem is NP-hard even if the underlining tree is restricted to be a star. On
the other hand, we construct a polynomial-time algorithm for finding a safe set of minimum weight on paths.

In Section 3, we define the concept of a parameterized infinite family of “proper central subgraphs” on trees,
whose polar ends are the minimum-weight connected safe sets and the centroids. We show that each of these central
subgraphs includes a centroid. We also give a linear-time algorithm to find all of these subgraphs on unweighted
trees.

2 Complexity

2.1 NP-completeness of Weighted Safe Set Problem

In this subsection, we consider the following decision problem:

CONNECTED VERTEX-WEIGHTED SAFE SET

INSTANCE: A connected graph G = (V,E), a positive weight function w : V → Q>0 on the vertex set V of G,
and a positive rational number t.
QUESTION: Does there exist S ⊂ V (G) with w(S) ≤ t such that G[S] is connected and w(S) ≥ w(C) for every
component C of G \ S?

We show the NP-completeness of the above problem by a reduction from the following problem:

SUBSET SUM

INSTANCE: A finite set A, a size s(a) ∈ Z>0 for each a ∈ A, a positive integer I.
QUESTION: Is there a subset A′ ⊆ A such that the sum of the sizes of the elements in A′ is exactly I?

The NP-completeness of SUBSET SUM is well known.

Theorem 1 (Karp, 1972). The problem SUBSET SUM is NP-complete.

By using the above, we derive

Theorem 2. The problem CONNECTED VERTEX-WEIGHTED SAFE SET is NP-complete, even if the

input graph is restricted to be a star.

Proof of Theorem 2. Note that CONNECTED VERTEX-WEIGHTED SAFE SET clearly belongs to
the class NP . Let T = (V,E) be a star defined by V = {c, u, v1, . . . , vk} and E = {cu, cv1, . . . , cvk}. Let
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w : V → Z>0 be a positive integral weight function on the vertex-set V of T such that w(c) = 1, w(u) = B,w(v1) =

a1, . . . , w(vk) = ak, and 1 + max{ai|i = 1, . . . , k} ≦ B ≦
∑k

i=1 ai hold.

1

B

a1

a2

ak

ak-1

c

u

v1

v2vk-1

vk

Figure 1: The star T and its vertex-weight w.

The set {c, u} is clearly a connected safe set on (T,w). This set {c, u} cannot be a minimum safe set on (T,w) if
and only if there exists a subset Λ ⊆ {1, . . . , k} such that B − 1 =

∑

λ∈Λ aλ holds. Moreover, the set {c, u} cannot
be a minimum safe set on (T,w) if and only if there exists a connected safe set whose weight is at most B. Hence,
by using the above gadget, we can reduce SUBSET SUM PROBLEM to CONNECTED VERTEX-WEIGHTED
SAFE SET PROBLEM in a polynomial time, as follows:

Let A = {v1, . . . , vm} be an instance of SUBSET SUM, and let si := 3s(vi) for each vi ∈ A. Set w(vi) = si for
each vi ∈ A. Set B := 3I +1. Note that max{si | i = 1, . . . ,m} ≦ 3I = B− 1 and 3 ≦ min{si | i = 1, . . . ,m} hold.
Set k := m + 1 and let vm+1 be an element outside of A such that w(vm+1) = B − 2. Set V := {u, c, v1, . . . , vk}
and E := {cu, cv1, . . . , cvk}. Set w(c) := 1, w(u) := B. Set t := B. Note that any safe set X of the pair (T,w) with

w(X) ≦ B cannot contain the vertex vm+1. Moreover we have that B ≦
∑k

i=1 si. Hence the answer of SUBSET

SUM for the instance is YES if and only if the answer of CONNECTED VERTEX-WEIGHTED SAFE SET

for the instance graph G := (V,E) is YES.

Actually, the problem CONNECTED VERTEX-WEIGHTED SAFE SET is NP-complete on the following
large class of graphs:

Corollary 1. For an arbitrary given connected graph H, we have the following: The problem CONNECTED

VERTEX-WEIGHTED SAFE SET is NP-complete even if the input graph G is restricted to have a bridge e

such that G− e is a disjoint union of a star and the graph H.

Proof of Corollary 1. Let all of V , E and w be as are defined in the last paragraph of the above proof of
Theorem 2. Let h be a vertex of the graph H. Set V ′ := V ∪ V (H) and set E′ := E ∪ E(H) ∪ {hvm+1}. Reset
w(vm+1) := (B − 2) − 0.1. For every element v of V , set w′(v) := w(v). For every vertex q of the graph H, set
w′(q) := 1

10|V (H)| . Let G := (V ′, E′). Then this w′ : V ′ → Q>0 be a positive weight function on the vertex-set of

G such that the pair (T,w) has a safe set S with w(S) ≦ B if and only if the pair (G,w′) has a safe set S′ with
w(S′) ≦ B. Hence the proof is complete.

2.2 Weighted safe set on paths

In this subsection, we consider the following optimization problem on paths.

WEIGHTED SAFE SET ON PATHS

INPUT: A path graph P = (V,E) such that |V | ≥ 3, and a positive weight function w : V → Q>0.
OUTPUT: A safe set S ⊂ V of minimum weight on P .

Theorem 3. Finding a safe set of minimum weight is polynomial-time solvable on paths.
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To prove this theorem, we show that the problem of weighted safe set on a path is equivalent to finding a
shortest weighted path on the acyclic digraph defined as follows: Let P be a path of n vertices, v1, v2, ..., vn, with
weights w1, w2, ..., wn. For 1 ≤ i ≤ j ≤ n, we call Pi,j the subpath of P consisting of the vertices vi, vi+1, ..., vj .

From P , we will construct the weighted digraph GP = (V (GP ), A(GP )) as follows:

V (GP ) = {ui,j , vi,j | 1 ≤ i ≤ j ≤ n, (i, j) 6= (1, n)} ∪ {t0, t∞},

A(GP ) =

{(ui,j , vj+1,k) | 1 ≤ i ≤ j < k ≤ n,w(Pi,j) ≥ w(Pj+1,k)}∪
{(vi,j , uj+1,k) | 1 ≤ i ≤ j < k ≤ n,w(Pi,j) ≤ w(Pj+1,k)}∪
{(t0, u1,j), (t0, v1,j) | j ∈ {1, 2, ..., n− 1}}∪
{(ui,n, t∞), (vi,n, t∞) | i ∈ {2, ..., n}},

∀i, j, w(ui,j) = w(Pi,j), w(vi,j) = 0,
w(t0) = w(t∞) = 0.

Lemma 1. There exists a bijection between the safe sets in P and the t0 − t∞ paths in GP .

Proof of Lemma 1. LetQ be any directed t0−t∞ path inGP . Q can be described by a set of pair {(i1, j1), (i2, j2),
. . . , (ik, jk)} such that Q is the path t0, . . . , vjl−1+1,il−1, uil,jl , vjl+1,il+1−1 . . . , t∞. The fact that there is an arrow
between vjl−1+1,il−1 and uil,jl imply that w(Pjl−1+1,il−1) ≤ w(Pil,jl) and the fact that there is an arrow between
uil,jl and vjl+1,il+1−1 imply that w(Pil,jl) ≥ w(Pjl+1,il+1−1). These conditions satisfy the definition of components

C of G[S] and D of G \ S weighted safe set S. Then,
k
⋃

l=1

Pil,jl is a weighted safe set of P .

In this correspondence, a safe set of P is composed of components of the form Pi,j , and the property of being a
safe set is translated to the condition that these components come from a directed path in GP as described above.

Lemma 2. The weight of a safe set in P is equal to the weight of its t0 − t∞ path in GP .

A small example is shown in Figure 2.

Theorem 4. For a given path P , we can construct the weighted directed graph GP = (V (GP ), A(GP )) in O(n3)
time and find a minimum t0 − t∞ path of G in O(n3) time, where n is the number of vertices of P .

By using Eppstein’s algorithm [8], we can enumerate all the paths of minimum vertex-weight in GP . This yields

Corollary 2. All safe sets of minimum weight can be enumerated in polynomial time delay on paths.

3 Centroid and its generalization

In this section we deal with the centroids on trees and introduce some generalizations. Let T be a weighted tree. For

every α in [0, 1], let Fα(T,w) := {X ⊆ V | T [V \X] has no component whose weight exceeds αw(V )
2 +(1−α)w(X)},

sα(T,w) = min{w(X) | X ∈ Fα(T,w)}, and Fmin
α (T,w) = {X ∈ Fα(T,w) | w(X) = sα(T,w)}. A member of

Fmin
0 (T,w) is called a minimum safe set of (T,w), while a member of Fmin

1 (T,w) is called a centroid of (T,w).
The order of every centroid of (T,w) is exactly one.

Proposition 2. If 0 ≦ α ≦ β ≦ 1, then Fα(T,w) ⊆ Fβ(T,w).

Proof of Proposition 2. Let X be an arbitrary set in Fα(T,w).

If w(X) ≧ w(V )
2 , then βw(V )

2 +(1−β)w(X) ≧ w(V )
2 ≧ w(V \X). Since the weight of any component of T [V \X]

does not exceed w(V \X), by the definition of Fβ(T,w), X is in Fβ(T,w).
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Figure 2: A path P, Pi,j and the corresponding directed graph GP . Each shortest t0 − t∞ path in GP corresponds
to a minimum safe set S in P , and vice versa.

If w(X) < w(V )
2 , then αw(V )

2 + (1− α)w(X) ≦ βw(V )
2 + (1− β)w(X) holds, and hence, again by the definition

of Fβ(T,w), X is in Fβ(T,w).

Corollary 3. If 0 ≦ α ≦ β ≦ 1, then sα(T,w) ≧ sβ(T,w).

Corollary 4. For every real number α ∈ [0, 1], sα(T,w) ≦ s0(T,w) ≦
w(V )

2 holds.

Proposition 3. Let T = (V,E) be a tree with n vertices, and w : V → R>0 be a positive weight function on the

vertices of T . If the pair (T,w) has at least two distinct centroids u, v ∈ V , then uv is an edge of T and the set

{u, v} is the set of all centroids of T .

Proof of Proposition 3. Let P denote the path from u to v on T . Let p be the vertex on P adjacent to u, q
the vertex on P adjacent to v. And let Tp denote the component of T \ up containing p and v, Tq the component

of T \ qv containing q and u. Since u and v are centroids of T , both w(V (Tp)) ≦
w(V )

2 and w(V (Tq)) ≦
w(V )

2 hold.
If V (P ) \ {u, v} 6= ∅, then V = V (Tp) ∪ V (Tq) and V (P ) \ {u, v} ⊆ V (Tp) ∩ V (Tq) and w(V (P ) \ {u, v}) > 0 hold.
Hence, we have w(V ) < w(V (Tp)) + w(V (Tq)) ≦ w(V ), which is a contradiction.

Theorem 5. Let T = (V,E) be a tree with n vertices, w : V → R>0 be a positive weight function on the vertices of

T , and α be an arbitrary positive real number in [0, 1). Let u be a centroid of (T,w). If an element S in Fmin
α (T,w)

does not contain the centroid u, then S must contain the other centroid v, w(S) = w(V )
2 holds, and V \ S is also

an element of Fmin
α (T,w). Furthermore, in this case, {S, V \ S} ⊆ Fmin

0 (T,w) and sα(T,w) = s0(T,w).

Proof of Theorem 5. Let u be a centroid of (T,w). Suppose that an element S in Fmin
α (T,w) does not contain

the centroid u. If S does not contain any centroid of (T,w), then the maximum cardinality among all components

of T [V \S] is strictly more than w(V )
2 , which contradicts the fact that sα(T,w) ≦

w(V )
2 . Hence S contains a centroid

v. In this case, by removing the edge uv from T , the resulting graph has two components, each of whose weight is
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equal to w(V )
2 . It means that αw(V )

2 + (1 − α)w(S) = w(V )
2 , and hence either α = 1 or w(S) = w(V )

2 holds. Since

α < 1, we have that sα(T,w) = w(S) = w(V )
2 . And hence sα(T,w) = s0(T,w) holds.

Corollary 5. Let T = (V,E) be a tree with n vertices, w : V → R>0 be a positive weight function on the vertices of

T , and α be an arbitrary positive real number in [0, 1). If sα(T,w) <
w(V )

2 , then, for every real number β ∈ [α, 1)
and for every member S of Fβ(T,w), S contains all the centroids of (T,w).

Let T = (V,E) be a tree with n vertices. For every real number α ∈ [0, 1], let us define Fα(T ) = {X ⊆ V |Every
component of T [V \X] has at most αn

2 + (1 − α)|X| vertices }, sα(T ) = min{|X| | X ∈ Fα(T )}, and Fmin
α (T ) =

{X ∈ Fα(T ) | |X| = sα(T )}.

Corollary 6. Let T = (V,E) be a tree with n vertices. If a set S in Fmin
α (T ) does not contain a centroid of T ,

Fmin
α (T ) has another element S′ such that S∩S′ = ∅ and |S| = |S′| = n

2 . Consequently, in this case, sα(T ) = s0(T )
holds.

Corollary 7. Let T = (V,E) be a tree with at least 5 vertices, and α be an arbitrary real number in [0, 1). Every

set in Fmin
α (T ) contains all of the centroids of T .

Let G = (V,E) be a graph of order n. For each subset X of V , let N (X) denote the open neighborhood {y ∈ V \X |
∃x ∈ X such that xy ∈ E(G)} of X.

CONNECTED SAFE SET CONTAINING A SPECIFIED VERTEX (CSSV)
INPUT: A tree T with at least two vertices, a vertex p of T and a nonnegative real number α at most 1
OUTPUT: A set S in Fα(T ) whose cardinality is minimum subject to p ∈ S

initialization

Set S = {p} ## T [S] is always connected
For each vertex u in V \ {p}, find the unique edge uv such that v is a vertex on the path from u to p on T . Let Tu

be the component of T − uv containing u and set c(u) = |V (Tu)|.
main loop

Repeat
Let x be a vertex in N (S) such that c(x) = max{c(u) : u ∈ N (S)}
Set S := S ∪ {x}

until max{c(u) : u ∈ N (S)} ≦ αn
2 + (1− α)|S|

return S

Theorem 6. Let T = (V,E) be a tree with at least 5 vertices, α be an arbitrary real number in [0, 1], and p be an

arbitrary vertex of T . Algorithm CSSV finds a set S in Fα(T ) whose cardinality is minimum subject to p ∈ S.

Further, it can be implemented to run in time O(n).

Proof of Theorem 6. The following statements are easy to prove:

• The whole list of the pairs {(v, c(v)) | v ∈ V } can be calculated in time O(n);

• the subgraph induced by S is connected.

Now we will prove the correctness of the algorithm by reductio ad absurdum. Let S be the output of the algorithm.
Suppose that there exists a member S1 of Fα(T ) such that p ∈ S1 and |S1| < |S| hold. Then there must exist
a leaf v of T [S] such that v ∈ S ∩ S1 and that T [V \ {v}] has a component X such that S ∩ V (X) = ∅ and
|V (X)| ≧ ⌊αn

2 + (1 − α)|S|⌋ hold. Actually, if T [S] has no such a leaf v, then, for every leaf x of T [S] such that
x ∈ S \ S1( 6= ∅) holds, S0 := S \ {x} will be also a member of Fα(T ), which contradicts the fact that the values
c(x) of vertices x added to S are monotonically decreasing in our algorithm. On the other hand, if such a leaf v of
T [S] exists, then the weight of a unique vertex q of X adjacent to v is strictly more than a weight of any leaf x of
T [S] such that x ∈ S \ S1( 6= ∅) holds. More precisely, c(x) < c(q) < c(v) holds, in this case. Hence, according to
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the rule of our algorithm, we must add q to the set S before we add x to the set, which is again a contradiction.

Corollary 8. If we set p to be a centroid of a tree T and set α := 0, then the algorithm CSSV outputs a minimum

safe set of T .

Corollary 9. For every tree T and for every two real numbers α, β such that 0 ≦ α ≦ β ≦ 1, there exist a member

Sα of Fmin
α (T ) and a member Sβ of Fmin

β (T ) such that Sβ ⊆ Sα holds.
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