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Almost central involutions in split extensions

of Coxeter groups by graph automorphisms

Koji Nuida

Abstract

In this paper, given a split extension of an arbitrary Coxeter group

by automorphisms of the Coxeter graph, we determine the involutions

in that extension whose centralizer has finite index. Our result has

applications to many problems such as the isomorphism problem of

general Coxeter groups. In the argument, some properties of certain

special elements and of the fixed-point subgroups by graph automor-

phisms in Coxeter groups, which are of independent interest, are also

given.

1 Introduction

Let (W, S) be an arbitrary Coxeter system, possibly of infinite rank, and G
a group acting on W . We assume that the action of G preserves the set
S; namely, each element of G gives rise to an automorphism of the Coxeter
graph of (W, S). The subject of this paper is the almost central involutions
in the semidirect product W ⋊ G corresponding the action of G; that is,
involutions which is central in some subgroup of W ⋊ G of finite index. We
determine those involutions in W ⋊G, hence the subgroup generated by those
involutions, in terms of the structure of the Coxeter system (W, S) and the
action of G on W (Theorem 3.1). Actually, this subgroup is the product
of some finite irreducible components of W , specified in terms of the action
of G, and a subgroup of G. Note that this subgroup is determined by the
group structure of W ⋊ G only, so our result can extract some information
on the Coxeter group W from the group structure of W ⋊ G. Moreover, if
W ⋊ G admits another expression W ′

⋊ G′ of this type, our result exhibits
some relation between the Coxeter groups W and W ′ through the subgroup
in problem (Theorem 3.2).

The main motive of this research is an application to the isomorphism
problem of general Coxeter groups; that is, the problem of deciding which
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Coxeter groups are isomorphic as abstract groups. An important phase of the
problem is to determine whether a given group isomorphism f between two
Coxeter groups W and W ′ maps the reflections in W onto those of W ′. As
summarized in Section 3.3, it is shown by a result of the author’s preceding
paper [14] that both the centralizer of a reflection t in W and that of f(t) in
W ′ are semidirect products satisfying the hypothesis of our main theorem.
Since those centralizers are isomorphic via f , our main theorem can derive
some properties of f(t) from those of W and of t. In particular, f(t) is
a reflection in W ′ whenever W and t satisfy a certain condition which is
independent on the choice of W ′ and f (Theorem 3.7). When the condition
is actually satisfied will be investigated in a forthcoming paper [13] of the
author. Note that this argument works without any assumption on finiteness
of ranks of W or of W ′, in contrast with most of the preceding results on the
isomorphism problem which covers the case of finite ranks only.

For other applications, our result implies that the product of all finite ir-
reducible components of a Coxeter group W is independent on the choice of
the generating set S of W (Example 3.3). On the other hand, regarding cer-
tain semidirect product decompositions of W into two Coxeter groups which
arise from the partition of S into conjugacy classes, our result shows that,
under a certain condition, the normal factor possesses no finite irreducible
component (Example 3.6). See Section 3.2 for further examples.

This paper is organized as follows. Section 2 is a preliminary for basics
and further remarks on abstract groups and Coxeter groups. Section 3 sum-
marizes the main result and its applications mentioned above. In Section 4,
we recall the notion of essential elements in Coxeter groups introduced by
Daan Krammer [10], and summarize some properties studied by Krammer
and by Luis Paris [16]. In Section 5, we give some results on the fixed-point
subgroup of a Coxeter group by an automorphism of the Coxeter graph, to-
gether with preceding results given by Robert Steinberg [18], by Bernhard
Mühlherr [11] and by Masayuki Nanba [12]. Finally, Section 6 is devoted to
the proof of the main theorem.
Acknowledgement. The author would like to express his deep gratitude to
everyone who helped him, especially to his supervisor Itaru Terada and also
to Kazuhiko Koike for their precious advice and encouragement. The author
had been supported by JSPS Research Fellowship throughout this research.
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2 Preliminaries

2.1 On abstract groups

In this subsection, we fix notations for abstract groups, and give some def-
initions and facts. Let G be an arbitrary group. We denote H ≤ G if H is
a subgroup of G, and H E G if H is a normal subgroup of G. For a subset
X ⊆ G, let 〈X〉 and 〈X〉⊳G denote the subgroup and the normal subgroup,
respectively, of G generated by X. Put

ZH(X) = {g ∈ H | gx = xg for all x ∈ X} for H ≤ G,

so ZG(X) is the centralizer of X in G. Write

xg = g−1xg and Xg = {xg | x ∈ X} for g, x ∈ G and X ⊆ G.

For H ≤ G, put

CoreGH =
⋂

g∈G

Hg,

the core of H in G. It is easily verified that CoreGH is the unique largest
normal subgroup of G contained in H .

Lemma 2.1. Let G be a group.

1. If H E G, then ZG(H) E G.

2. If X ⊆ G, then ZG(〈X〉⊳G) = CoreGZG(X).

Proof. The proof of (1) is straightforward. For (2), the inclusion ⊆ follows
from (1) since 〈X〉 ⊆ 〈X〉⊳G, so it suffices to show that H ⊆ ZG(〈X〉⊳G)
whenever H E G and H ⊆ ZG(X). Now we have X ⊆ ZG(H) E G by (1), so
〈X〉⊳G ⊆ ZG(H), proving the claim.

Let [G : H ] denote the index of a subgroup H ≤ G in G. Recall the
following well-known properties:

if G ≥ H1 ≥ H2, then [G : H2] = [G : H1] [H1 : H2] ; (2.1)

if H1, H2 ≤ G, then [G : H1] ≥ [H2 : H1 ∩ H2] . (2.2)

From these properties it is easy to deduce that

if H1, H2 ≤ G and [G : H2] < ∞, then the followings are equivalent:

[G : H1] < ∞; [G : H1 ∩ H2] < ∞; [H2 : H1 ∩ H2] < ∞. (2.3)
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Lemma 2.2. Let H ≤ G. Then [G : H ] < ∞ if and only if [G : CoreGH ] <
∞.

Proof. The only nontrivial part is the “only if” part. Let G =
⊔n

i=1 Hgi

(where n = [G : H ] < ∞) be a decomposition into cosets. Then CoreGH =⋂n

i=1 Hgi. Now for 1 ≤ k ≤ n, two subgroups Hgk and H have the same

(finite) index in G, so the subgroup
⋂k

i=1 Hgi has finite index in
⋂k−1

i=1 Hgi by
(2.2). Now iterative use of (2.1) yields the desired conclusion.

We say that an element g ∈ G is almost central in G if [G : ZG(g)] < ∞.

Corollary 2.3. Let G be a group and g ∈ G.

1. We have [G : ZG(〈g〉⊳G)] < ∞ if and only if g is almost central in G.

2. If g is almost central in G, then all h ∈ 〈g〉⊳G are almost central in G.

Proof. The claim (1) follows immediately from Lemmas 2.1 (2) and 2.2, and
(2) is a consequence of (1) and the observation ZG(h) ≥ ZG(〈g〉⊳G).

Lemma 2.4. Let G1 ⋊G2 be a semidirect product of two groups, and suppose
that Hi ≤ Gi has finite index in Gi for i = 1, 2. Then [G1 ⋊ G2 : H1H2] < ∞.

Proof. Decompose Gi as
⊔ri

j=1 gi,jHi, where ri < ∞. Then

G1 ⋊ G2 =
⋃

1≤j≤r1, 1≤k≤r2

g1,jH1g2,kH2 =
⋃

j,k

g1,jg2,kH
g2,k

1 H2.

Since [G1 : H1] < ∞, we have
[
H

g2,k

1 : H
g2,k

1 ∩ H1

]
< ∞ by (2.2). Let

H
g2,k

1 =
⊔nk

ℓ=1 hk,ℓ(H
g2,k

1 ∩ H1) (where nk < ∞) be the corresponding coset
decomposition. Then we have

G1 ⋊ G2 =
⋃

j,k

nk⋃

ℓ=1

g1,jg2,khk,ℓ(H
g2,k

1 ∩ H1)H2 ⊆
⋃

j,k,ℓ

g1,jg2,khk,ℓH1H2.

where the last union is taken over the finite set of the (j, k, ℓ), as desired.

2.2 Coxeter groups

This subsection summarizes some basic definitions and facts for Coxeter
groups, which are found in the book [9] unless otherwise noticed, and give
further results and remarks. Some more preliminaries focusing into the two
topics, essential elements and fixed-point subgroups by Coxeter graph auto-
morphisms, will be given in Sections 4 and 5.
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2.2.1 Definitions

A pair (W, S) of a group W and its generating set S is called a Coxeter
system if W admits the following presentation

W = 〈S | (st)ms,t = 1 for all s, t ∈ S such that ms,t < ∞〉,

where the ms,t ∈ {1, 2, . . .} ∪ {∞} are symmetric in s, t ∈ S, and ms,t = 1 if
and only if s = t. A group W is called a Coxeter group if some S ⊆ W makes
(W, S) a Coxeter system. The cardinality |S| of S is called the rank of (W, S)
or of W , which is not assumed to be finite unless otherwise noticed. Now
ms,t coincides with the order of st ∈ W , so the system (W, S) determines
uniquely (up to isomorphism) the Coxeter graph denoted by Γ, that is a
simple unoriented graph with vertex set S in which every two vertices s, t ∈ S
is joined by an edge with label ms,t if and only if ms,t ≥ 3. (By convention,
the label ‘3’ is usually omitted when drawing a picture.)

An automorphism of the Coxeter graph Γ is briefly called a graph auto-
morphism of (W, S) of of W . Let Aut Γ denote the set of the graph auto-
morphisms of W . Then mτ(s),τ(t) = ms,t for τ ∈ Aut Γ and s, t ∈ S, so this τ
extends uniquely to an automorphism of the group W denoted also by τ .

For I ⊆ S, let WI denote the standard parabolic subgroup 〈I〉 of W gener-
ated by I. A subgroup conjugate to some WI is called a parabolic subgroup.
(In some context, the term “parabolic subgroups” signifies the subgroups WI

themselves only.) Now (WI , I) is also a Coxeter system, of which the Coxeter
graph ΓI is the full subgraph of Γ with vertex set I. If I is (the vertex set of)
a connected component of Γ, then WI is called an irreducible component of
(W, S) (or of W , if the set S is obvious from the context). If Γ is connected,
then (W, S) and W are called irreducible. Now W is the (restricted) direct
product of the irreducible components; however, each irreducible component
is not necessarily directly indecomposable as an abstract group.

Regarding the standard parabolic subgroups, it is well known that

if I, J ⊆ S, then WI ∩ WJ = WI∩J . (2.4)

Then, since each w ∈ W is a product of a finite number of elements of S,
it follows that W possesses a unique minimal standard parabolic subgroup
containing w, called the standard parabolic closure of w and denoted here by
SP(w). Now the support supp(w) ⊆ S of w ∈ W is defined by

Wsupp(w) = SP(w).

On the other hand, we have the following fact for parabolic subgroups:
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Proposition 2.5 (See e.g. [7, Corollary 7]). Let I, J ⊆ S and w ∈ W .
Then WI ∩ (WJ)w = (WK)u for some K ⊆ I and u ∈ WI . Moreover, we have
K 6= I whenever WI 6= (WJ)w.

This proposition denies the existence of an infinite, properly descending
sequence (WI1)

w1 ⊃ (WI2)
w2 ⊃ · · · of parabolic subgroups with I1 finite,

since it enables us to choose the Ii inductively as descending properly. Thus
W also possesses a unique minimal parabolic subgroup containing a given
w ∈ W , called the parabolic closure of w and denoted here by P(w).

Let ℓ denote the length function of (W, S), namely ℓ(w) (where w ∈ W )
is the minimal length n of an expression w = s1 · · · sn with si ∈ S (so
ℓ(w−1) = ℓ(w)). Such an expression of w with n = ℓ(w) is called a reduced
expression. The following three well-known properties will be used in the
arguments below, without references:

if w ∈ W and s ∈ S, then ℓ(ws) = ℓ(w) ± 1;
for I ⊆ S, the length function ℓI of (WI , I) agrees with ℓ on WI ;
supp(w) = {s1, . . . , sn} for any reduced expression w = s1 · · · sn.

Theorem 2.6 (Exchange Condition). Let w = s1 · · · sn ∈ W , si ∈ S
and t ∈ S with ℓ(wt) < ℓ(w). Then there exists an index i such that wt =
s1 · · · ŝi · · · sn (si omitted).

2.2.2 Geometric representation and root systems

Let V denote the geometric representation space of W , that is an R-vector
space equipped with the basis Π = {αs | s ∈ S} and the symmetric bilinear
form 〈 , 〉 determined by

〈αs, αt〉 = − cos
π

ms,t

if ms,t < ∞ and 〈αs, αt〉 = −1 if ms,t = ∞.

W acts faithfully on V by s · v = v− 2〈αs, v〉αs for s ∈ S and v ∈ V , making
〈 , 〉 W -invariant. Let Φ = W · Π, Φ+ = Φ ∩ R≥0Π and Φ− = −Φ+ denote,
respectively, the root system, the set of positive roots and the set of negative
roots. We have Φ = Φ+ ⊔ Φ−, and Φ consists of unit vectors with respect to
〈 , 〉. For any subset Ψ ⊆ Φ and w ∈ W , write

Ψ+ = Ψ ∩ Φ+, Ψ− = Ψ ∩ Φ− and Ψ [w] = {γ ∈ Ψ+ | w · γ ∈ Φ−}.

Then ℓ(w) coincides with the cardinality |Φ [w] | of Φ [w], so w = 1 if and
only if Φ [w] = ∅. This implies a further property that

for w, u ∈ W, we have w = u if and only if Φ [w] = Φ [u] . (2.5)
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For any v =
∑

s∈S csαs ∈ V , the support supp(v) ⊆ S of v is defined by

supp(v) = {s ∈ S | cs 6= 0}.

For I ⊆ S, put

ΠI = {αs | s ∈ I} ⊂ Π, VI = spanRΠI ⊂ V and ΦI = Φ ∩ VI .

Then it is well known (see e.g. [8, Lemma 4]) that

ΦI = WI · ΠI , (2.6)

the root system of a Coxeter system (WI , I). Note that Φ [w] ⊆ Φsupp(w) for
w ∈ W . Moreover, it is well known that for I ⊆ S, any w ∈ W admits a
unique decomposition w = wIwI with wI ∈ WI and ΦI [wI ] = ∅. Note that
Φ [wI ] = ΦI [w]. This implies that

if w ∈ W and s ∈ supp(w), then s ∈ supp(γ) for some γ ∈ Φ [w] (2.7)

(if this fails, then Φ [w] = ΦI [w] = Φ [wI ] where I = supp(w) r {s}, so
w = wI ∈ WI by (2.5), contradicting the definition of supp(w)). Now we
prepare a technical lemma which will be used in later sections.

Lemma 2.7. Let 1 6= w ∈ W and I = supp(w) ⊆ S.

1. Let γ ∈ Φ+, J = supp(γ) and suppose that I ∩J = ∅ and J is adjacent
to I in the Coxeter graph Γ. Then w · γ ∈ Φ+

I∪J r ΦJ .

2. Suppose that s ∈ S rI is adjacent to I in Γ. Then supp(ws) = I ∪{s}.

3. For i = 1, 2, let 1 6= ui ∈ W , Ji = supp(ui) and suppose that Ji ∩ I = ∅
and J2 is adjacent to I in Γ. Then u1wu2 6= w.

Proof. (1) Since the action of w ∈ WI leaves the coefficient in γ of any
αs ∈ ΠJ unchanged, it suffices to show that w · γ 6= γ. Take s ∈ I adjacent
to J , and β ∈ Φ+

I such that s ∈ supp(β) and w · β ∈ Φ−
I (see (2.7)). This

choice yields that 〈β, γ〉 < 0 and 〈w · β, γ〉 ≥ 0 since I ∩ J = ∅, showing that
w · γ 6= γ since 〈 , 〉 is W -invariant.
(2) Put J = supp(ws). Then we have w = (ws)s ∈ WJ∪{s} and so I ⊆ J∪{s},
therefore I ⊆ J since s 6∈ I. On the other hand, ws · αs = −w · αs ∈
Φ− r {−αs} by (1), so we have ws · αs ∈ Φ− and s ∈ J . Thus we have
I ∪ {s} ⊆ J , while ws ∈ WI∪{s}, proving the claim.
(3) Take s ∈ J2 adjacent to I, and γ ∈ Φ [u2

−1 ] ⊆ Φ+
J2

with s ∈ supp(γ) (see
(2.7)), so β = u2

−1 · γ lies in Φ−
J2

. Then w · β ∈ Φ− since I ∩ J2 = ∅, while
wu2 · β = w · γ ∈ Φ+ r ΦSrI by (1) and so u1wu2 · β ∈ Φ+ since J1 ∩ I = ∅.
Thus we have u1wu2 6= w as desired.
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For γ = w · αs ∈ Φ, let sγ = wsw−1 denote the reflection along the root
γ acting on V by sγ · v = v − 2〈γ, v〉γ for v ∈ V . Let

SW =
⋃

w∈W

wSw−1

denote the set of the reflections in W , which depends on the set S in general.

Lemma 2.8. Let W be an infinite irreducible Coxeter group. Then the orbit
W · γ ⊆ Φ of any root γ ∈ Φ is an infinite set.

The proof of this lemma requires the following two results:

Proposition 2.9 ([4, proof of Proposition 4.2]). Let W be an infinite
irreducible Coxeter group of finite rank, and I ⊂ S a proper subset. Then
|Φ r ΦI | = ∞.

Proposition 2.10 ([15, Lemma 2.9]). Let w ∈ W and suppose that I, J ⊆
S are disjoint subsets such that w ·ΠI = ΠI and w ·ΠJ ⊆ Φ−. Then we have
ΦI∪J [w] = Φ+

I∪J r ΦI .

Proof of Lemma 2.8. First we show that, for any β ∈ Φ+, we have
〈β, αs〉 < 0 for some s ∈ S. This is obvious if |S| = ∞ (choose s ∈ Srsupp(β)
adjacent in the infinite connected graph Γ to the finite set supp(β)), so
suppose that |S| < ∞. Assume contrary that 〈β, αs〉 ≥ 0 for all s ∈ S. Put
I = {s ∈ S | 〈β, αs〉 = 0} 6= S (note that 〈β, β〉 = 1), so sβ fixes ΦI pointwise.
Then for any s ∈ SrI, we have 〈β, αs〉 > 0 and sβ ·αs = αs−2〈β, αs〉β ∈ Φ−.
Thus Proposition 2.10 implies that Φ [sβ] = Φ+ r ΦI , which has cardinality
ℓ(sβ) < ∞, contradicting Proposition 2.9. Hence the claim of this paragraph
holds.

For the lemma, we may assume that γ ∈ Φ+. Then by taking s ∈ S
with 〈γ, αs〉 < 0 and putting γ1 = s · γ, we have γ1 6= γ and γ1 − γ ∈ R≥0Π.
Iterating, we obtain an infinite sequence γ0 = γ, γ1, γ2, . . . of distinct positive
roots in W · γ inductively, proving the claim.

We also prepare a technical lemma.

Lemma 2.11. Let β, γ ∈ Φ+, I ⊆ S and suppose that supp(γ) 6⊆ supp(β)
and supp(γ) 6⊆ I. Then sγ 6∈ sβWI .

Proof. Assume contrary that sγ = sβw for some w ∈ WI . Then we have
w ·γ = sβsγ ·γ = −sβ ·γ, while w ·γ ∈ Φ+ and sβ ·γ ∈ Φ+ by the hypothesis.
This is a contradiction.
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2.2.3 Finite, affine and hyperbolic Coxeter groups

The finite irreducible Coxeter groups are completely classified, as summarized
in [9, Chapter 2]. If I ⊆ S and WI is finite, let w0(I) denote the unique longest
element of WI , which is an involution and maps ΠI onto −ΠI . If WI is
irreducible (but not necessarily finite) and 1 6= w ∈ WI , then we have Iw = I
if and only if WI is finite and w = w0(I). This implies the well-known fact
that the center Z(WI) of an arbitrary WI is an elementary abelian 2-group.
Moreover, if WI is finite but not irreducible, then w0(I) = w0(I1) · · ·w0(Ik)
where WI1, . . . , WIk

are the irreducible components of WI . It is well known
that, if w ∈ WI and ℓ(ws) < ℓ(w) for all s ∈ I, then WI is finite and
w = w0(I).

Theorem 2.12 ([17, Theorem A]). For any involution w ∈ W , there is
a finite WI (where I ⊆ S) such that w is conjugate to w0(I) and w0(I) ∈
Z(WI).

The cases where |WI | < ∞ and w0(I) ∈ Z(WI) are determined as well.
Let W be an irreducible Coxeter group of finite rank. Then W is called

affine or compact hyperbolic, respectively, if the bilinear form 〈 , 〉 satisfies
that (1) it is positive semidefinite or nondegenerate, respectively; (2) it is
not positive definite; and (3) its restriction to any proper subspace VI ⊂ V
(where I ⊂ S) is positive definite. (See [9, Section 6.8] for another definition
of compact hyperbolicness and its equivalence to ours.) The next proposition
says that these are the minimal non-finite irreducible Coxeter groups.

Proposition 2.13. Let W be a Coxeter group of finite rank.

1. ([9, Theorem 6.4]) We have |W | < ∞ if and only if 〈 , 〉 is positive
definite.

2. If |W | = ∞ and every proper standard parabolic subgroup WI ⊂ W is
finite, then W is irreducible, and is either affine or compact hyperbolic.

Proof. For (2), it is easy to show that this W is irreducible. Thus by (1)
and the definition of compact hyperbolicness, it now suffices to show that
this 〈 , 〉 is positive semidefinite if it is degenerate. This follows from the
observation that now V is the sum of a positive definite subspace VSr{s}
(where s ∈ S; see (1)) of codimension 1 and the nonzero radical V ⊥ of V
(note that V ⊥ 6⊆ VSr{s}).

The affine and the compact hyperbolic Coxeter groups are completely
determined in [9, Chapter 2 and Section 6.9]. See the lists in Figures 1 and
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· · ·
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Ã1 ✐ ✐
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B̃n (n ≥ 3)
✐

✐
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✏✏✏✏ · · · 4
1

2
3 4 n n + 1

C̃n (n ≥ 2) ✐ ✐ ✐ ✐ ✐ ✐· · ·4 4

1 2 3 n − 1 n n + 1

D̃n (n ≥ 4)
✐

✐
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✐
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✐

✐
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6

7 Ẽ7
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✐
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8

Ẽ8
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✐

1 2 3 4 5 6 7 8

9

F̃4

✐ ✐ ✐ ✐ ✐4

1 2 3 4 5

G̃2 ✐ ✐ ✐6

1 2 3

Figure 1: List of the affine Coxeter groups
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X1 ✐
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✐41

2 3 4

5 X2(m1, m2)( )
3 ≤ m1, m2 ≤ 5

(m1, m2) 6= (3, 3)

✐

✐ ✐

✐m1

m2

1

2 3

4

X3(m1, m2, m3)( )
3 ≤ m1, m2, m3 < ∞
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✐

✐ ✐

�
��

❅
❅❅

m1 m3

m2

1

2 3

Y1

✐ ✐

✐

✐

✟✟✟✟

❍❍❍❍

5

1 2

3

4

Y2
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✐

✐

✟✟✟✟

❍❍❍❍

5

1 2 3

4

5

Y3(m)

(3 ≤ m ≤ 5)
✐ ✐ ✐ ✐ ✐5 m

1 2 3 4 5

Y4(m)

(m = 4, 5)
✐ ✐ ✐ ✐5 m

1 2 3 4

Y5
✐ ✐ ✐ ✐5

1 2 3 4

Y6(m1, m2)

( )
3 ≤ m2 ≤ m1 < ∞, 5 ≤ m1

(m1, m2) 6= (5, 3), (6, 3)
✐ ✐ ✐m1 m2

1 2 3

Figure 2: List of the compact hyperbolic Coxeter groups
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A∞
✐ ✐ ✐ · · ·
1 2 3 A±∞

✐ ✐ ✐ ✐ ✐· · · · · ·
−2 −1 0 1 2

B∞
✐ ✐ ✐ ✐ · · ·4

1 2 3 4 D∞

✐

✐
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◗

◗

✑
✑ · · ·

1

2
3 4 5

Figure 3: Some Coxeter groups of infinite ranks

2, where we abbreviate si to i. Note that the names of the compact hyperbolic
Coxeter groups given here are not standard and are very temporary.

On the other hand, it is shown in [15, Proposition 4.14] that the infinite
irreducible Coxeter groups of infinite ranks, in which every proper standard
parabolic subgroup of finite rank is finite, are exhausted by Figure 3.

2.2.4 On centralizers and normalizers in Coxeter groups

The centralizers and the normalizers in Coxeter groups play important roles
in our arguments. Here we summarize some properties which we require.

Lemma 2.14 (e.g. [15, Lemma 4.4]). Let WI be a finite standard parabolic
subgroup of W such that w0(I) ∈ Z(WI). Then the centralizer ZW (w0(I))
coincides with the normalizer NW (WI) of WI in W .

Proposition 2.15. Let W be an infinite irreducible Coxeter group. Then no
involution in W is almost central in W (see Section 2.1 for terminology).

Proof. First, if s ∈ S, then W acts transitively on the conjugacy class of s in
W , which is an infinite set (Lemma 2.8), so the kernel of this action is ZW (s)
and has infinite index in W . Thus s is not almost central.

By Theorem 2.12, it suffices to prove that the longest element w0(I) of
any finite WI 6= 1 with w0(I) ∈ Z(WI) is not almost central. Note that
ZW (w0(I)) = NW (WI) (Lemma 2.14), while [NW (WI) : ZW (WI)] < ∞ since
|WI | < ∞. By the first paragraph, ZW (s) has infinite index in W for any
s ∈ I, so do ZW (WI) (see (2.1)) and ZW (w0(I)), as desired.

Finally, in [15, Theorem 3.1], the centralizer of a normal subgroup gen-
erated by involutions in an irreducible W is completely determined. The
following observation is an easy consequence of the result.

Proposition 2.16 (See [15, Theorem 3.1]). Suppose that W is an ar-
bitrary Coxeter group, and H ≤ W is a subgroup generated by involutions
which is normal in W . Then ZW (H) is also generated by involutions.
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3 The main theorem and its applications

The first subsection of this section summarizes the main theorem of this
paper (Theorem 3.1) and its corollary (Theorem 3.2) together with some
notational remarks. The second subsection consists of some examples, and
explains what our theorem yields in these cases. Finally, the third subsection
is devoted to an application of our theorem to the analysis of the isomorphism
problem of Coxeter groups (the problem of deciding which Coxeter groups are
isomorphic as abstract groups), which is the original motive of this research.

3.1 Main theorem

First we prepare some notations. Let W be an arbitrary Coxeter group, and
G a group acting on W via a map ρ : G → Aut Γ, g 7→ ρg, yielding the
semidirect product W ⋊ G with respect to ρ. Let Cfin

W and Cinf
W be the set

of the finite and the infinite irreducible components of W , respectively, and
CW = Cfin

W ∪Cinf
W . Then the G-action permutes the elements of each of CW , Cfin

W

and Cinf
W . Let ρ† : G → Sym(Cfin

W ), g 7→ ρ†
g, denote the induced permutation

representation of G on Cfin
W . For C ⊆ CW , let W (C) be the product of the

irreducible components in C, and put Wfin = W (Cfin
W ) and Winf = W (Cinf

W ).
Moreover, for an arbitrary group H , let HACI be the set of the almost central
involutions in H (see Section 2.1 for the terminology).

Now our main theorem is as follows:

Theorem 3.1. Here we adopt the above notations.

1. Let wg be an involution in W ⋊G with w ∈ W and g ∈ G. Then wg is
almost central in W ⋊ G if and only if w ∈ W (Oρ) and g ∈ Gρ ∪ {1},
where Gρ is the set of all h ∈ GACI satisfying the following condition:

ρh is identity on all irreducible components of W

except a finite number of finite irreducible components, (3.1)

and Oρ ⊆ Cfin
W is the union of the ρ†(G)-orbits with finite cardinalities.

2. We have
〈(W ⋊ G)ACI〉 = W (Oρ) ⋊ 〈Gρ〉.

Note that, assuming Theorem 5.1 below, the condition (3.1) is equivalent
to the finiteness of the index [W : W ρg ] of the fixed-point subgroup W ρg by
ρg. The proof of Theorem 3.1 is postponed until Section 6.

Since the subgroup 〈HACI〉 of a group H is determined by the isomorphism
type of H only, we obtain the following consequence.
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Theorem 3.2. For i = 1, 2, let Wi ⋊ Gi be a semidirect product (via ρi :
Gi → AutΓi) as in Theorem 3.1, and f : W1 ⋊ G1

∼→ W2 ⋊ G2 a group
isomorphism. Then f maps W1(Oρ1

) ⋊ (G1)ρ1
onto W2(Oρ2

) ⋊ (G2)ρ2
.

3.2 Examples

First we observe that, if |G| < ∞, then every ρ†(G)-orbit in Cfin
W is finite, so

Oρ = Cfin
W in Theorem 3.1, therefore 〈(W ⋊ G)ACI〉 = Wfin ⋊ Gρ and Gρ is

generated by all involutions h ∈ G satisfying (3.1).

Example 3.3. Let W be an arbitrary Coxeter group. Then, by putting G =
1, Theorem 3.1 shows that 〈WACI〉 = Wfin. Thus if f : W

∼→ W ′ is a group
isomorphism between two Coxeter groups, then f(Wfin) = W ′

fin; hence, by
taking W ′ = W and f = idW , it follows that the factor Wfin is independent
on the choice of the generating set S ⊆ W .

Example 3.3 is slightly generalized as follows:

Example 3.4. Let W wr Sn = W n ⋊Sn denote the wreath product of W with
the symmetric group Sn on n letters, so σ ∈ Sn acts on (w1, . . . , wn) ∈ W n

by ρσ(w1, . . . , wn) = (wσ−1(1), . . . , wσ−1(n)). Then Theorem 3.1 implies that

〈(W wr Sn)ACI〉 =

{
W wr Sn if |W | < ∞;

Wfin
n if |W | = ∞.

Indeed, if |W | = ∞, then W possesses either an infinite irreducible com-
ponent or infinitely many finite irreducible components, so no non-identity
σ ∈ Sn satisfies the condition (3.1) in any case.

We say that an irreducible component WI of W has finite multiplicity in
W if W possesses only finitely many irreducible components with Coxeter
graph isomorphic to ΓI . Note that, even if |G| = ∞, the factor W (Oρ) in
the theorem contains all WI ∈ Cfin

W with finite multiplicities.

Example 3.5. Let G = Aut Γ ∗ Aut Γ be the free product of two copies of
Aut Γ, and ρ : G → Aut Γ the map obtained by forgetting the distinction
of the two factors Aut Γ of G. Then Oρ is the set of all WI ∈ Cfin

W with
finite multiplicities, and Gρ = 1 since we have GACI = ∅ by properties of
free products. Roughly speaking, Theorem 3.1 extracts the finite irreducible
components of W with finite multiplicities in this manner.

For the final example, we prepare some further facts and notations. Let
Γodd denote the odd Coxeter graph of a Coxeter group W , which is the sub-
graph of Γ obtained by removing all the edges with non-odd labels. It is
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well known (see [9, Exercise 5.3]) that two orbits W · αs and W · αt (where
s, t ∈ S) intersects nontrivially if and only if s and t lie in the same connected
component of Γodd. Let S = S1 ⊔ S2 be a partition where both factors are
unions of connected components of Γodd, and Φ∼S1

=
⋃

s∈S1
W ·αs ⊆ Φ. Now

a general theorem of Vinay V. Deodhar [5] or of Matthew Dyer [6] shows
that the subgroup W (Φ∼S1

) generated by the reflections sγ along γ ∈ Φ∼S1
,

which is normal in W since Φ∼S1
is W -invariant, is a Coxeter group. More-

over, the set Φ∼S1
plays the role of a root system of W (Φ∼S1

); for example,
any non-identity w ∈ W (Φ∼S1

) sends some γ ∈ Φ+
∼S1

to a negative root.
Now we show that W decomposes as W (Φ∼S1

) ⋊ WS2
. First, if 1 6= w ∈

W (Φ∼S1
)∩WS2

, then w ·γ ∈ Φ− for some γ ∈ Φ+
∼S1

as mentioned above, and
γ ∈ ΦS2

since w ∈ WS2
. Now by (2.6), we have γ ∈ W · αs ∩W · αt for some

s ∈ S1 and t ∈ S2, contradicting the choice of the partition S = S1 ⊔ S2.
Thus we have W (Φ∼S1

) ∩ WS2
= 1, while S ⊆ W (Φ∼S1

)WS2
generates W ,

yielding the desired decomposition.
Moreover, this argument also shows that each s ∈ S2 preserves the set

Φ+
∼S1

of positive roots of W (Φ∼S1
) (since αs 6∈ Φ∼S1

), so also the set of simple
roots of W (Φ∼S1

), therefore WS2
acts on W (Φ∼S1

) as graph automorphisms.
Thus Theorem 3.1 yields the following observation:

Example 3.6. In the situation, suppose further that W is infinite and ir-
reducible. Then 〈WACI〉 = 1 (Example 3.3), while W (Φ∼S1

)(Oρ) contains
all the finite irreducible components of W (Φ∼S1

) with finite multiplicities as
mentioned above. Since 1 = W (Φ∼S1

)(Oρ) ⋊ (WS2
)ρ (Theorem 3.2), it fol-

lows that no finite irreducible component of W (Φ∼S1
) has finite multiplicity

in W (Φ∼S1
).

In addition, if WS2
is finite, then we have W (Φ∼S1

)(Oρ) = W (Φ∼S1
)fin.

Now it follows that W (Φ∼S1
) possesses no finite irreducible component.

3.3 Application to the isomorphism problem of Cox-
eter groups

An important phase of the isomorphism problem of Coxeter groups is of
deciding whether a given group isomorphism f : W

∼→ W ′ between two
Coxeter groups W and W ′ (with generating sets S and S ′, respectively)

maps the set SW of reflections in W onto that S ′W ′

in W ′; or, whether the
subset SW of W is independent on the choice of S. Note that, as is shown in
[2, Lemma 3.7], we have f(SW ) = S ′W ′

if and only if f(S) ⊆ S ′W ′

. Roughly
speaking, our result below measures how f(s) differs from reflections for each
s ∈ S, within a certain compass. In most successful cases, the result is able
to show that all f(s) are reflections in W ′ (see Theorem 3.7).
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Note that our results cover the case |S| = ∞ as well, in contrast with
almost all of the preceding results on the isomorphism problem which cover
the case of finite ranks only.

3.3.1 Preliminaries on centralizers and normalizers

The central tools of our argument are the centralizers ZW (WI) and the nor-
malizers NW (WI) of standard parabolic subgroups WI , which are described
by the author [14] in a general setting (note that the normalizers had al-
ready been described by Brigitte Brink and Robert B. Howlett [3]). Here we
summarize some of the author’s results which we use.

Here we require the result only for the case that |WI | < ∞ and w0(I) ∈
Z(WI). Now ZW (WI) and NW (WI) admit the following decompositions:

ZW (WI) = (Z(WI) × W⊥I) ⋊ YI and NW (WI) = (WI × W⊥I) ⋊ ỸI . (3.2)

Here W⊥I denotes the subgroup of W generated by the reflections in the set
ZW (WI) r WI , which is a Coxeter group by a theorem of Deodhar [5] or of
Dyer [6]. Since Z(WI) is an elementary abelian 2-group, both Z(WI)×W⊥I

and WI × W⊥I are also Coxeter groups. The factor ỸI of NW (WI) acts on
WI × W⊥I as graph automorphisms, preserving the factor WI . The factor
YI of ZW (WI) is torsion-free and is the kernel of the induced action of ỸI on

WI , so YI is normal and has finite index in ỸI since |WI | < ∞.

3.3.2 The results

Let f : W
∼→ W ′ be a group isomorphism between two Coxeter groups W

and W ′ as above, and I ⊆ S a subset with |WI | < ∞ and w0(I) ∈ Z(WI).
Our temporal subject is the element f(w0(I)) ∈ W ′. Since f(w0(I)) is an
involution in W ′ as well as w0(I), Theorem 2.12 allows us to assume for
simplicity that f(w0(I)) = w0(J) for some J ⊆ S ′ with |W ′

J | < ∞ and

w0(J) ∈ Z(W ′
J). Let Y ′

J and Ỹ ′
J denote the last factors of ZW ′(W ′

J) and of
NW ′(W ′

J), respectively (see (3.2)).
We start with a very simple observation: since the isomorphism f maps

w0(I) to w0(J), it also maps ZW (w0(I)) onto ZW ′(w0(J)), so the combination
of Lemma 2.14 and (3.2) yields the following isomorphism

f : (WI × W⊥I) ⋊ ỸI
∼−→ (W ′

J × W ′⊥J
) ⋊ Ỹ ′

J . (3.3)

Let ρ and ρ′ denote the maps representing the actions of ỸI and Ỹ ′
J in (3.3),

respectively. Then by (3.3) and the results in Section 3.3.1, Theorem 3.2
yields the following isomorphism

f : (WI × W⊥I)(Oρ) ⋊ (ỸI)ρ
∼−→ (W ′

J × W ′⊥J
)(O′

ρ′) ⋊ (Ỹ ′
J)ρ′ . (3.4)
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Now the left and the right sides of (3.4) contain, as normal subgroups, WI and

W ′
J which are ρ(ỸI)-invariant and ρ′(Ỹ ′

J)-invariant, respectively. Thus if we
know much enough of the structure of the left side of (3.4), then we would be
able to say something about the variation of the set J , so about the property
of f(w0(I)). This is hopeful at least for individual cases, since [14] also gives
a method for computing the explicit structure of the decompositions (3.2).

From now, we assume further that ỸI = YI (this is satisfied if WI admits
no nontrivial graph automorphism). For an arbitrary group G, let GINV be
the set of the involutions in G, so 〈GINV〉EG and 〈GINV〉 is determined by the
isomorphism type of G only as well as 〈GACI〉. Then, since both WI × W⊥I

and W ′
J × W ′⊥J are generated by involutions and the torsion-free group YI

possesses no involution, we can derive from (3.3) the following isomorphism

f : WI × W⊥I ∼−→ (W ′
J × W ′⊥J

) ⋊ G, where G = 〈(Ỹ ′
J)INV〉, (3.5)

by taking the 〈(∗)INV〉 of both sides. Now consider the centralizers of the
normal subgroups f−1(W ′

J) and W ′
J in the left and the right sides of (3.5),

respectively, which are also isomorphic via f . Since f−1(W ′
J) is generated

by involutions, Proposition 2.16 implies that the centralizer in the left side
is also generated by involutions, so is the centralizer in the right side. The
latter is the intersection of the right side of (3.5) and ZW ′(W ′

J) = (Z(W ′
J) ×

W ′⊥J) ⋊ Y ′
J , that is

(Z(W ′
J) × W ′⊥J

) ⋊ (Y ′
J ∩ G),

and all of its involutions are contained in the former factor since Y ′
J ∩ G

is torsion-free as well as Y ′
J . Thus it follows that Y ′

J ∩ G = 1, so the G-
action on the finite group W ′

J is faithful, therefore G is also finite. Hence, as
mentioned in the first paragraph of Section 3.2, (3.5) and Theorem 3.2 yield
the following isomorphism

f : WI × W⊥I
fin

∼−→ (W ′
J × W ′⊥J

fin) ⋊ Gρ′. (3.6)

This reduces our problem to the study of semidirect product decompositions
of Coxeter groups whose irreducible components are finite.

Finally, specializing to the case I = {s}, we obtain the following result.

Theorem 3.7. Let (W, S) be an arbitrary Coxeter system.

1. Suppose that s ∈ S, and W⊥s
fin is either trivial or generated by a single

reflection conjugate to s. Then f(s) ∈ S ′W ′

for any Coxeter system
(W ′, S ′) and any group isomorphism f : W

∼→ W ′.
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2. Suppose that every s ∈ S satisfies the hypothesis of (1). Then f(S) ⊆
S ′W ′

for any Coxeter system (W ′, S ′) and any group isomorphism f :
W

∼→ W ′, so f preserves the set of reflections. Hence the set SW is
determined by W only and independent on the choice of S ⊆ W .

Proof. We only prove (1), since (2) follows immediately from (1) and the
first remark of Section 3.3. Now the above argument works for I = {s}, so it
suffices to deduce that |J | = 1, implying that f(s) = w0(J) ∈ S ′ as desired.
This is immediately done if W⊥s

fin = 1, since J 6= ∅ and now both sides of
(3.6) have cardinality 2.

Suppose that W⊥s
fin = 〈t〉 with t ∈ W conjugate to s. Then both sides of

(3.6) have cardinality 4. Thus if |J | 6= 1, then it follows that J = {s′, t′} for
two commuting generators s′, t′ ∈ S ′ and the right side of (3.6) is W ′

J itself,
so we have an isomorphism f : 〈s〉 × 〈t〉 ∼→ 〈s′〉 × 〈t′〉. Since we assumed
that f(s) = w0(J) = s′t′, it follows that f(t) is either s′ or t′, which cannot
be conjugate to f(s) = s′t′ in W ′, contradicting the choice of t. Hence
|J | = 1.

Moreover, a forcecoming paper [13] of the author will describe for which
s ∈ S the hypothesis is indeed satisfied, and show that this case occurs very
frequently.

4 Essential elements and Coxeter elements

Krammer introduced in his Ph.D. thesis [10] the notion of essential elements
of Coxeter groups. An element w of a Coxeter group W is called essential
in W if the parabolic closure P(w) of w is W itself (see Section 2.2.1 for
terminology). Note that any W of infinite rank cannot possess an essential
element, while a Coxeter element s1s2 · · · sn of an infinite irreducible W of
finite rank (where S = {s1, s2, . . . , sn}) is always essential in W (see Theorem
4.1). Here we summarize some properties of essential elements required in
later sections, as follows:

Theorem 4.1. Let W be an infinite irreducible Coxeter group of finite rank.

1. Any essential element of W has infinite order.

2. Let 0 6= k ∈ Z. Then w ∈ W is essential in W if and only if wk is
essential in W .

3. If n = |S| and γ1, . . . , γn ∈ Φ are linearly independent, then sγ1
· · · sγn

is essential in W . Hence any Coxeter element of W is essential in W .
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The claim (1) is an immediate consequence of a well-known theorem of
Jacques Tits, which says that any finite subgroup of a Coxeter group is
contained in a finite parabolic subgroup (see e.g. [1, Lemma 1.2] for a proof).
On the other hand, (2) and (3) are shown by Paris in his recent preprint
[16]; however, he proved (3) only for Coxeter elements though his idea is
adaptable applicable to the generalized version. Here we include proofs of
(2) and (3) along Paris’ idea for the sake of completeness.

For (2), we fix W and w as in the statement. For γ ∈ Φ, let σw
γ =

((σw
γ )n)n∈Z be the infinite sequence of + and − such that (σw

γ )n = ε if and only
if wn ·γ ∈ Φε. We define (σw

γ )∞ (or (σw
γ )−∞, respectively) to be ε ∈ {+,−} if

(σw
γ )n = ε (or (σw

γ )−n = ε, respectively) for all sufficiently large n. Following
[10], we say that γ is w-periodic if wn ·γ = γ for some n 6= 0. Now we include
the proofs of the following two lemmas for the sake of completeness.

Lemma 4.2 (See [10, Proposition 5.2.2]). If γ ∈ Φ is not w-periodic,
then only finitely many sign-changes occur in the sequence σw

γ .

Proof. By the hypothesis, all roots wn · γ such that (σw
γ )n 6= (σw

γ )n+1 are
distinct and contained in the finite set Φ [w] ∪−Φ [w].

A root γ ∈ Φ is called w-odd (see [10]) if it is not w-periodic (so both
(σw

γ )±∞ are defined; see Lemma 4.2) and (σw
γ )∞ 6= (σw

γ )−∞. A reflection sγ

is called w-odd if γ is w-odd.

Lemma 4.3 (See [10, Lemma 5.2.7]). For k ∈ Z r {0}, a root of W is
w-odd if and only if it is wk-odd.

Proof. Note that γ ∈ Φ is w-periodic if and only if it is wk-periodic. Thus
for a non-w-periodic γ, all of (σw

γ )±∞ and (σwk

γ )±∞ are defined (Lemma 4.2)
and we have

(σwk

γ )±∞ =

{
(σw

γ )±∞ if k > 0;

(σw
γ )∓∞ if k < 0,

respectively. Thus the claim follows.

Let P∞(w) denote the subgroup of W generated by the w-odd reflections.
The following result of [10] is crucial in our argument.

Proposition 4.4 (See [10, Corollary 5.8.7]). The parabolic closure P(w)
is a direct product of P∞(w) and a finite number of finite groups.

Moreover, the following result of the author [15] is also required. See also
[16, Theorem 4.1] for the case of finite ranks.
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Proposition 4.5 ([15, Theorem 3.3]). If W is an infinite irreducible Cox-
eter group, then W is directly indecomposable as an abstract group.

Corollary 4.6. Suppose that W is infinite and irreducible. Then w ∈ W is
essential in W if and only if P∞(w) = W .

Proof. The ‘if’ part is a consequence of Proposition 4.4. For the “only if”
part, assume that P(w) = W . Then Proposition 4.4 implies that W is
the direct product of P∞(w) and certain finite groups, while W is directly
indecomposable (Proposition 4.5). Thus W must coincide with one of the
direct factors, which cannot be finite since |W | = ∞, so W = P∞(w) as
desired.

Now the claim (2) of Theorem 4.1 follows easily from Lemma 4.3 and
Corollary 4.6, since the wk-odd reflections are precisely the w-odd reflections.

For the proof of (3), we prepare two lemmas. Here we say that (W, S) is
(non)degenerate to signify the (non)degenerateness of the bilinear form 〈 , 〉,
respectively.

Lemma 4.7 (See [16, Lemma 3.2]). Let W be a Coxeter group of finite

rank. Then there is a nondegenerate Coxeter system (W̃ , S̃) of finite rank

such that S ⊆ S̃ and W̃S = WS.

Proof. We put n = |S| and S = {s1, s3, . . . , s2n−1}, and apply the following

algorithm inductively for 1 ≤ k ≤ n, beginning with S̃ = S:

if the Coxeter system (〈Ik〉, Ik) (where Ik = {si ∈ S̃ | i ≤ 2k})
is degenerate, add a new generator s2k to S̃ so that s2k−1s2k has
infinite order and s2k commutes with the other elements of S̃.

By computing the determinant of the matrix of the bilinear form with respect
to the basis {αsi

}i, it is checked inductively that the Coxeter system (〈Ik〉, Ik)
will be nondegenerate when the k-th step is done. Hence the Coxeter system
(W̃ , S̃) = (〈In〉, In) obtained finally is the desired one.

Lemma 4.8. Any element of a proper standard parabolic subgroup WI of W
has a nonzero 1-eigenvector in V .

Proof. It suffices to consider the case that S = {s1, s2, . . . , sn} is finite and
I = S r{sn}. Then, by definition of the W -action, the n-th row of the repre-
sentation matrix Aw of w ∈ WI relative to the basis Π of V is (0 0 · · · 0 1).
Thus the matrix In − Aw is singular as desired.

The following property is the essence of the claim (3) of Theorem 4.1.
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Proposition 4.9. Let W be a Coxeter group with |S| = n < ∞, and suppose
that γ1, . . . , γn ∈ Φ are linearly independent. Then the standard parabolic
closure of sγ1

· · · sγn
∈ W is W itself.

Proof. Assume contrary that w = sγ1
· · · sγn

∈ WI for a proper WI ⊂ W . We
may assume without loss of generality that (W, S) is nondegenerate, since

we can extend S to S̃ = S ⊔ {t1, . . . , tm} as in Lemma 4.7 and consider

t1 · · · tmw ∈ W̃J instead of w, where J = S̃ r (S r I). Choose a nonzero
v ∈ V such that w ·v = v (Lemma 4.8). Then, since (W, S) is nondegenerate,
there is an index i such that 〈v, γi〉 6= 0 and 〈v, γj〉 = 0 for all j > i. This
implies that w · v = sγ1

· · · sγi
· v, which is the sum of sγi

· v = v − 2〈v, γi〉γi

and a linear combination of γ1, . . . , γi−1. Now the property w ·v = v yields an
expression of 2〈v, γi〉γi as a linear combination of the other γj, contradicting
the linear independence of γ1, . . . , γn. Hence the claim follows.

Now the claim (3) of Theorem 4.1 is easily proved, since the hypothesis
of Proposition 4.9 is invariant under the action of W . Hence the proof of
Theorem 4.1 is concluded.

5 On the fixed-point subgroups by Coxeter

graph automorphisms

The subject of this section is the fixed-point subgroup

W τ = {w ∈ W | τ(w) = w}

of a Coxeter group W by a graph automorphism τ ∈ AutΓ (as mentioned
in Section 2.2.1, the automorphism of W induced by τ is also denoted by
τ). Let τ\S denote the set of the 〈τ〉-orbits in S. Then it was shown by
Steinberg [18, Theorem 1.32] that W τ is a Coxeter group with respect to the
following generating set

S(W τ ) = {w0(I) ∈ W | I ∈ τ\S and |WI | < ∞}

(see also [11] and [12]). Here we show the following properties of the subgroup
W τ , which will be used in the proof of the main theorem.

Theorem 5.1. Let W be an arbitrary Coxeter group and τ ∈ Aut Γ. Then
W τ has finite index in W if and only if τ is identity on all irreducible com-
ponents of W except a finite number of finite irreducible components.

Theorem 5.2. Let W be an infinite irreducible Coxeter group and τ ∈ AutΓ.
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1. If |WI | < ∞ for all I ∈ τ\S, then the Coxeter group W τ is also infinite
and irreducible with respect to the generating set S(W τ).

2. Suppose that the hypothesis of (1) fails and every orbit I ∈ τ\S is finite.
Then for any 1 6= w ∈ W τ , there is an element u ∈ W of infinite order
such that ukwτ(u)−k 6= w for all 0 6= k ∈ Z.

Note that the result on infiniteness of W τ in Theorem 5.2 (1) is mentioned
in [11, Section 5] without proof in a generalized setting.

5.1 Proof of Theorem 5.1

Our first step is to prove the following lemma:

Lemma 5.3. Let W be an (irreducible) affine or compact hyperbolic Coxeter

group with type W 6= Ã1 (see Section 2.2.3 for terminology). Suppose further
that Aut Γ 6= {idS}. Then for any idS 6= τ ∈ Aut Γ, there is an element
w ∈ W of infinite order such that 〈w〉 ∩ 〈τ(w)〉 = 1.

From now until the end of the proof of Lemma 5.3, we assume that S is
finite and the base field of the (finite-dimensional) geometric representation
space V is extended from R to C. Then the bilinear form 〈 , 〉 and the
faithful W -action also extend naturally so that W is embedded injectively
in the group of orthogonal linear transformations of V relative to 〈 , 〉. For
λ ∈ C, let Vλ(w) denote the λ-eigenspace of w ∈ W , and let V√

1(w), V 6=
√

1(w)
be the sum of Vλ(w) where λ runs over the roots of unity, over Cr{0} except
the roots of unity, respectively. Then some elementary linear algebra shows
that, if w ∈ W , 0 6= λ ∈ C and 0 6= k ∈ Z, then Vλ(w

k) is the sum of Vµ(w)
where µ ∈ C varies subject to µk = λ. Hence we have V√

1(w
k) = V√

1(w)
and V 6=

√
1(w

k) = V 6=
√

1(w) whenever k 6= 0.
Now we have the following:

Lemma 5.4. Let w1, w2 ∈ W and suppose that either V√
1(w1) 6= V√

1(w2) or
V 6=

√
1(w1) 6= V 6=

√
1(w2). Then 〈w1〉 ∩ 〈w2〉 = 1.

Proof. Assume contrary that k, ℓ ∈ Z r {0} and w1
k = w2

ℓ. Then, in the
first case V√

1(w1) 6= V√
1(w2), the above observation implies that

V√
1(w1

k) = V√
1(w1) 6= V√

1(w2) = V√
1(w2

ℓ),

contradicting the assumption w1
k = w2

ℓ. The other case is similar.
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Define actions of τ ∈ Aut Γ on V and the dual space V ∗ with dual basis
{α∗

s | s ∈ S} (as linear transformations) by

τ(αs) = ατ(s) and τ(α∗
s) = α∗

τ(s) for s ∈ S.

Then τ preserves the bilinear form 〈 , 〉, and we have τ(w) · τ(v) = τ(w ·
v) for w ∈ W and v ∈ V . Thus for 0 6= λ ∈ C and w ∈ W , it fol-
lows that Vλ(τ(w)) = τ(Vλ(w)), V√

1(τ(w)) = τ(V√
1(w)) and V 6=

√
1(τ(w)) =

τ(V 6=
√

1(w)). Moreover, we have τ(η)(τ(v)) = η(v) for η ∈ V ∗ and v ∈ V .
Note also that Ann(τ(V ′)) = τ(Ann(V ′)) for any subspace V ′ ⊆ V , where
Ann(V ′) = {η ∈ V ∗ | η(V ′) = 0} denotes the annihilator of V ′.

By these observations, we have the following lemmas. In these lemmas,
write v⊥ = {v′ ∈ V | 〈v, v′〉 = 0} for v ∈ V .

Lemma 5.5. Let idS 6= τ ∈ Aut Γ, β, γ ∈ Φ+ and V ′ ⊂ V a subspace of
codimension 1. Suppose that 〈β, γ〉 = −1, V ′ ⊆ β⊥ ∩ γ⊥ and Ann(V ′) is not
τ -invariant. Then w = sβsγ ∈ W has infinite order and 〈w〉 ∩ 〈τ(w)〉 = 1.

Proof. Since 〈β, γ〉 = −1, we have wk ·β = (2k +1)β +2kγ 6= β for all k ≥ 1,
showing that w has infinite order. Thus V√

1(w) 6= V , since otherwise we
have V1(w

k) = V and wk = 1 for a sufficiently large k, a contradiction. Now
we have

V ′ ⊆ β⊥ ∩ γ⊥ ⊆ V1(w) ⊆ V√
1(w) ⊂ V and dim V − dim V ′ = 1,

implying that V ′ = V√
1(w). Since Ann(V ′) is not τ -invariant, we have

Ann(V√
1(w)) 6= τ(Ann(V√

1(w))) = Ann(V√
1(τ(w))),

so V√
1(w) 6= V√

1(τ(w)). Hence Lemma 5.4 completes the proof.

Lemma 5.6. For i = 1, 2, let βi, γi ∈ Φ+ and V (i) ⊂ V a subspace of
codimension 3, and suppose that 〈βi, γi〉 < −1, V (i) ⊆ βi

⊥ ∩ γi
⊥ and Cβ1 +

Cγ1 6= Cβ2 + Cγ2. Then each wi = sβi
sγi

∈ W has infinite order and
〈w1〉 ∩ 〈w2〉 = 1.

Proof. Put vi
± = (−ci ±

√
c2
i − 1)βi + γi and λi

± = 2c2
i − 1 ∓ 2ci

√
c2
i − 1,

respectively, where ci = 〈βi, γi〉. Then a direct computation shows that
wi · vi

± = λi
±vi

± and |λi
±| 6= 1, respectively, and λi

+λi
− = 1, so wi has

infinite order. Moreover, since βi
⊥ ∩ γi

⊥ ⊆ V1(wi), the hypothesis implies
that dim V − dim V1(wi) ≤ 3, so the characteristic polynomial χwi

(x) =
det(x · idV − wi) of wi decomposes as

χwi
(x) = (x − 1)|S|−3(x − λi

+)(x − λi
−)(x − µi) where µi ∈ C.
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Table 1: List for the proof of Lemma 5.3, affine case

W τ β γ Ann(V ′)

Ãn (n ≥ 2) τ(1) 6= 1 α1 011 · · ·11 2α∗
1 − α∗

2 − α∗
n+1

B̃n (n ≥ 3) α1 0122 · · ·22
√

2 2α∗
1 − α∗

3

C̃n (n ≥ 2) α1 0
√

2
√

2 · · ·
√

2
√

21
√

2α∗
1 − α∗

2

D̃n (n ≥ 4) τ(1) 6= 1 α1 0122 · · ·2211 2α∗
1 − α∗

3

Ẽ6 τ(1) 6= 1 α1 0232121 2α∗
1 − α∗

2

Ẽ7 α1 02343212 2α∗
1 − α∗

2

Now we have ±1 = det wi = ±χwi
(0) = ±λi

+λi
−µi since wi is a product of

involutions, so µi = ±1. Thus V 6=
√

1(wi) = Cvi
+ + Cvi

− = Cβi + Cγi, so
V 6=

√
1(w1) 6= V 6=

√
1(w2) by the hypothesis. Hence Lemma 5.4 completes the

proof.

Corollary 5.7. Let idS 6= τ ∈ Aut Γ, β, γ ∈ Φ+ and V ′ ⊂ V a subspace of
codimension 3. Suppose that 〈β, γ〉 < −1, V ′ ⊆ β⊥ ∩ γ⊥ and Cβ + Cγ is not
τ -invariant. Then w = sβsγ ∈ W has infinite order and 〈w〉 ∩ 〈τ(w)〉 = 1.

Proof. Note that τ(Cβ + Cγ) = Cτ(β) + Cτ(γ) and τ(sβsγ) = sτ(β)sτ(γ).
Then the claim follows from Lemma 5.6, where β1 = β, γ1 = γ, β2 = τ(β),
γ2 = τ(γ), V (1) = V ′ and V (2) = τ(V ′).

Proof of Lemma 5.3. This lemma is deduced from Lemma 5.5 for affine
case and Corollary 5.7 for compact hyperbolic case, by constructing the β, γ
and V ′ as in Tables 1 and 2 (see also Figures 1 and 2). Note that β +γ is the
null root of W in an affine case. If |AutΓ| ≥ 3, we assume by symmetry that
τ satisfies the condition in the second column of the lists, where we abbreviate
si to i. In the next two columns, a word c1c2 · · · cr (where r = |S|) signifies∑r

i=1 ciαi ∈ V and α̃i denotes the unique highest root of the finite Coxeter
group WSr{si}. Finally, the last column gives a basis of V ′ or of Ann(V ′).

Now we cancel the assumption |S| < ∞ placed above. To prove Theorem
5.1, note that if τ ∈ Aut Γ leaves WI ⊆ W invariant, then WI possesses its
own fixed-point subgroup WI

τ which coincides with W τ ∩ WI .

Proof of Theorem 5.1. The only nontrivial part is the “only if” part, so
we prove it. Note that, by (2.2), the hypothesis implies that

[G : W τ ∩ G] < ∞ for any subgroup G ≤ W, (5.1)

so W τ ∩ G 6= 1 for every infinite subgroup G of W .
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Table 2: List for the proof of Lemma 5.3, compact hyperbolic case

W τ β γ V ′

X1 α1 01111 α3, α4

X2(m1, m2) α4 s1s2 · α3 α2

X3(m1, m2, m3) τ(3) 6= 3 α3 s2 · α1 ∅
Y1 α4 α̃4 α3

Y2 α5 α̃5 α1, α2

Y3(5) α5 α̃5 α1, α2

Y4(5) α4 α̃4 α1

Y5 α4 α̃4 α1

Y6(m, m) (m ≥ 5) α3 s2 · α1 ∅

Step 1: if I ⊆ S is finite, and WI is infinite and irreducible, then
τ(WI) = WI .

Assume contrary that τ(I) 6= I, or equivalently I 6⊆ τ(I). Then we have
I ∩ τ(I) 6= I, while W τ ∩ WI ⊆ WI ∩ Wτ(I) = WI∩τ(I) (see (2.4)), therefore
no essential element in WI lies in W τ . Hence by Theorem 4.1, any power wk

(with k 6= 0) of a Coxeter element w of WI has infinite order and is not in
W τ , so we have W τ ∩ 〈w〉 = 1, contradicting (5.1).

Step 2: the claim holds if W has finite rank.

Now it suffices to show that τ is identity on every infinite irreducible
component WI . Moreover, since (by Step 1) τ(WI) = WI and (by (5.1))
[WI : WI

τ ] < ∞, it actually suffices to consider the case WI = W , namely
W itself is infinite and irreducible. In this case, our aim is to show that τ is
identity.

First, we consider the case that W is not of type Ã1 and every proper
WJ ⊂ W is infinite. Then by combining Proposition 2.13 (2) and Lemma 5.3,
we have 〈w〉∩〈τ(w)〉 = 1 for some w ∈ W of infinite order whenever τ 6= idS.
This implies that W τ ∩〈w〉 = 1, contradicting (5.1). Thus τ must be identity

now, as desired. On the other hand, the claim also holds if type W = Ã1,
since now we have W τ = 1 whenever τ 6= idS.

Finally, we consider the remaining case that a proper WJ ⊂ W is infinite.
We may assume that J = S r {s} for some s ∈ S, so it suffices to show that
τ |J = idJ . Since |S| < ∞, we may assume further that WJ is irreducible:
indeed, if WJ is not irreducible and WK is an infinite irreducible component
of WJ (which exists since |J | < ∞), then the set S r {s′}, where s′ is an
element of J rK farthest from s in Γ, possesses the desired properties. Now
Step 1 implies that τ(J) = J , so [WJ : WJ

τ ] < ∞ (by (5.1)), therefore the
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induction on |S| shows that τ |J = idJ , as desired.

Step 3: if I ∈ τ\S, then |I| < ∞.

Assume contrary that |I| = ∞. Then for any w ∈ WI with J = supp(w)
(finite and) nonempty, we have J 6= I and so J 6= τ(J) (since I is a 〈τ〉-orbit),
therefore J 6⊆ τ(J) and w 6∈ Wτ(J). This means that τ(w) 6= w. Thus we
have W τ ∩ WI = 1, contradicting (5.1).

Step 4: τ is identity on every infinite irreducible component WI .

First, we consider the case that a (not necessarily proper) WJ ⊆ WI of
finite rank is infinite. We can take an irreducible WJ . Now assume contrary
that τ is not identity on WI , so τ(s) 6= s for some s ∈ I. Then, since WI

is irreducible and |J | < ∞, an irreducible WK ⊆ WI of finite rank contains
both WJ and s. This WK is also infinite, so τ(K) = K (Step 1), therefore
[WK : WK

τ ] < ∞ by (5.1). Now Step 2 implies that τ is identity on WK ,
contradicting the choice of s. Hence the claim holds in this case.

In the remaining case, WI is of type A∞, A±∞, B∞ or D∞ (see Figure
3) as mentioned in Section 2.2.3. Note that τ(WI) = WI , since otherwise we
have W τ ∩ WI = 1, contradicting (5.1). Now the claim is trivial in the first
and the third cases where Aut Γ = {idS}.

In the case type WI = A±∞, if τ is not identity on WI , then Step 3 implies
that τ is a turning of the infinite path ΓI , so there is an infinite J ⊂ I with
J ∩ τ(J) = ∅. Now we have W τ ∩ WJ = 1, contradicting (5.1). This verifies
the claim.

Finally, in the case type WI = D∞, if τ is not identity on WI , then τ(s1) =
s2, τ(s2) = s1 and τ fixes J = Ir{s1, s2} pointwise. Put K = J∪{s2}. Since
any w ∈ WK satisfies that τ(w) ∈ WJ∪{s1}, we have W τ ∩ WK = WJ (see

(2.4)), so [WK : WJ ] < ∞ by (5.1). However, putting γk =
∑k

i=2 αsi
∈ Φ+

K

for k ≥ 3, Lemma 2.11 implies that all of the infinitely many reflections sγk

belong to distinct cosets in WK/WJ . This contradiction yields the claim.

Step 5: conclusion.

Assume that the “only if” part fails. Then by Step 4, W possesses in-
finitely many finite irreducible components WI1, WI2, . . . on which τ is not
identity. Since every 〈τ〉-orbit is finite (Step 3), there is an infinite sequence
s1, s2, . . . of distinct elements of S such that J = {si | i ≥ 1} satisfies that
τ(J) ∩ J = ∅; take s1 as any element of I1 with τ(s1) 6= s1, and if s1, . . . , sk

are already chosen, then take sk+1 ∈ Ii where Ii does not intersect with the
〈τ〉-orbits of the preceding sj and τ(sk+1) 6= sk+1. Now we have W τ ∩WJ = 1
and |WJ | = ∞, contradicting (5.1). Hence the proof is concluded.
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5.2 Proof of Theorem 5.2

We start with some preliminaries. Let τ ∈ Aut Γ and w ∈ W τ , and denote
the support of w as an element of (W τ , S(W τ )) by suppτ (w). The following
(part of a) result of [12] shows a relation between supp(w) and suppτ (w).

Proposition 5.8 (See [12, Proposition 3.3]). Let w = w0(I1) · · ·w0(Ir)
(where w0(Ii) ∈ S(W τ)) be a reduced expression of w ∈ W τ with respect to
S(W τ ). Then any expression of w obtained by replacing each w0(Ii) with its
reduced expression, with respect to S, is also reduced with respect to S. Hence
supp(w) =

⋃r

i=1 Ii.

Secondly, we give a remark on the Coxeter graph of the Coxeter system
(W τ , S(W τ)), denoted here by Γτ . Let τ\Γ be the graph with vertex set
τ\S, in which two orbits I, J ∈ τ\S are joined if and only if these sets are
adjacent in Γ. Then the vertex set S(W τ ) of Γτ is regarded as a subset of
the vertex set τ\S of τ\Γ via an embedding w0(I) 7→ I. Now we have the
following result on a relation between Γτ and τ\Γ.

Lemma 5.9. Under the embedding S(W τ) →֒ τ\S of the vertex set, the
underlying graph of Γτ is a full subgraph of τ\Γ.

Proof. Let I, J ∈ τ\S be two distinct orbits with both WI and WJ finite.
It is obvious that I and J are not adjacent in Γτ (i.e. w0(I) and w0(J)
commute) if these are not adjacent in τ\S. Thus our remaining task is to
show that w0(I) and w0(J) do not commute if I and J are adjacent in τ\S,
namely some s ∈ I is adjacent to J in Γ. Now Lemma 2.7 (1) implies
that w0(J) · αs ∈ Φ+

J∪{s} r Φ{s}, so w0(I)w0(J) · αs ∈ Φ+. On the other

hand, we have w0(I) · αs ∈ Φ−
I , so w0(J)w0(I) · αs ∈ Φ−. Thus we have

w0(I)w0(J) 6= w0(J)w0(I) as desired.

Moreover, note that τ\Γ is connected whenever Γ is. Indeed, for any
I, J ∈ τ\S, a path in the connected graph Γ between any s ∈ I and any
t ∈ J gives rise to a path in τ\Γ between I and J .

Proof of Theorem 5.2 (1). As is remarked above, the irreducibility of
W yields the connectedness of τ\Γ, while the hypothesis implies that the
embedding Γτ →֒ τ\Γ in Lemma 5.9 is now an isomorphism. Thus Γτ is
connected as desired.

For the infiniteness of W τ , assume the contrary. Then W τ possesses the
longest element wτ

0 with respect to S(W τ). Now for any s ∈ S, belonging
by the hypothesis to an I ∈ τ\S with |WI | < ∞, the wτ

0 and w0(I) admit a
reduced expression with respect to S(W τ) and S ending with w0(I) and s,
respectively, by Exchange Condition. Thus Proposition 5.8 implies that wτ

0
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admits a reduced expression with respect to S ending with s. Since s ∈ S
is arbitrary, this means that W is finite and wτ

0 is the longest element of W
(see Section 2.2.3), contradicting the hypothesis that W is infinite. Hence
the claim follows.

Proof of Theorem 5.2 (2). Note that the graph τ\Γ is connected. Since
the hypothesis of (1) now fails, there is a path I0I1 · · · Ir in τ\Γ, where
Ii ∈ τ\S, such that w0(I0) ∈ suppτ (w) and |WIr

| = ∞. By choosing the
shortest possible path, we may assume that |WIi

| < ∞ and w0(Ii) 6∈ suppτ (w)
for 1 ≤ i ≤ r−1. Now Lemma 5.9 says that I0I1 · · · Ir−1 is also a path in Γτ , so
by applying Lemma 2.7 (2) to the Coxeter system (W τ , S(W τ)), it is deduced
that w0(Ir−1) ∈ suppτ (w′ww′−1) where w′ = w0(Ir−1) · · ·w0(I2)w0(I1) ∈ W τ .
Thus Proposition 5.8 implies that supp(w′ww′−1) ⊆ S contains Ir−1, does
not intersect Ir and is adjacent to Ir in Γ.

Take s ∈ Ir adjacent to supp(w′ww′−1) in Γ. Now we show that, if
WIr

possesses an element u′ of infinite order such that s ∈ supp(u′k) for all
0 6= k ∈ Z, then u = w′−1τ−1(u′)w′ is the desired element. Indeed, for k 6= 0,
we have τ−1(u′)kw′ww′−1u′−k 6= w′ww′−1 by the choice of u′ and Lemma 2.7
(3) (note that τ−1(u′) ∈ WIr

), so, since τ(w′) = w′, we have

ukwτ(u)−k = w′−1(
τ−1(u′)kw′ww′−1

u′−k)
w′ 6= w.

Finally, we show the existence of such an element u′, concluding the proof.
Since |WIr

| = ∞ and Ir ∈ τ\S is a finite orbit, an irreducible component of
WIr

, therefore that containing s, is infinite. Now Theorem 4.1 implies that
a Coxeter element of this component possesses the desired property.

6 Proof of the main theorem

This section is devoted to the proof of Theorem 3.1. First, note that the
factor W (Oρ) in the statement is ρ(G)-invariant, so the product W (Oρ)〈Gρ〉
of two subgroups of W ⋊ G is indeed the semidirect product W (Oρ) ⋊ 〈Gρ〉.
This implies that, since W (Oρ) is generated by involutions, the claim (2)
follows immediately from (1). So we prove (1) below.

For the “only if” part, we assume that wg ∈ (W ⋊ G)ACI and prove that
w ∈ W (Oρ) and g ∈ Gρ ∪ {1}. Now by (2.2) and Corollary 2.3 (2), we have

[H : ZH(w′g′)] < ∞ for any H ≤ W ⋊ G and w′g′ ∈ 〈wg〉⊳W⋊G. (6.1)

Note that ρg(w) = w−1 and g2 = 1 since 1 = (wg)2 = wρg(w) · g2. We divide
the proof into the following five steps.

Step 1: ρg maps each WI ∈ Cinf
W onto itself.
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Assume contrary that ρg maps WI onto an irreducible component other
than WI . Let π : W ։ WI be the projection. Take s ∈ I and put
a = swgs(wg)−1 ∈ 〈wg〉⊳W⋊G. Then we have a = swρg(s)w

−1 ∈ W , so
ZWI

(a) = ZWI
(π(a)). Thus (6.1) implies that π(a) ∈ WI is almost cen-

tral in WI . However, the first assumption yields that π(ρg(s)) = 1, so
π(a) = sπ(w)1π(w)−1 = s, which is not almost central in WI by Propo-
sition 2.15. This is a contradiction.

Step 2: ρg is identity on every WI ∈ Cinf
W .

Assume that the claim fails for WI . Note that ρg(WI) = WI by Step
1. Let π : W ։ WI be the projection. Then we may assume without
loss of generality that ℓ(π(w)) ≤ ℓ(π(uwρg(u)−1)) for all u ∈ WI ; if this
inequality fails, replace wg with another involution u(wg)u−1 = uwρg(u)−1 ·g
in 〈wg〉⊳W⋊G, which is also almost central in W ⋊ G by (6.1), and use the
induction on ℓ(π(w)).

Put τ = ρg|I ∈ Aut ΓI , which is assumed to be non-identity. Now if
π(w) = 1, then we have ZWI

(wg) = ZWI
(g) = WI

τ and so [WI : WI
τ ] < ∞

by (6.1), contradicting Theorem 5.1. Thus π(w) 6= 1.
We show that π(w) is an involution in WI

τ . Let s1 · · · sn (where n ≥ 1
and si ∈ I) be an arbitrary reduced expression of π(w) ∈ WI . Then, since
ρg(w) = w−1 and ρg(WI) = WI , we have

π(w) = π(ρg(w)−1) = ρg(π(w)−1) = τ(π(w)−1) = τ(sn) · · · τ(s1),

so ℓ(π(w)τ(s1)) < ℓ(π(w)), therefore Exchange Condition shows that π(w) =
s1 · · · ŝi · · · snτ(s1) for an index i. Now if i ≥ 2, then π(s1wτ(s1)

−1) =
s2 · · · ŝi · · · sn is shorter than π(w), contradicting the minimality of ℓ(π(w)).
Thus we have i = 1 and π(w) = s2 · · · snτ(s1). Since the original reduced
expression s1 · · · sn is arbitrary, we can apply this argument to the new ex-
pression of π(w). Iterating, we have

π(w) = s3 · · · snτ(s1)τ(s2) = · · · = snτ(s1) · · · τ(sn−1) = τ(s1) · · · τ(sn).

Since π(w) = s1 · · · sn = τ(sn) · · · τ(s1), the claim of this paragraph follows.
Now if ms,τ(s) = ∞ for some s ∈ I, then since τ 2 = idI , Theorem 5.2 (2)

(applied to π(w)) gives us an element u ∈ WI of infinite order such that

π(ukwgu−k(wg)−1) = ukπ(w)τ(u)−kπ(w)−1 6= 1 for all k 6= 0.

This means that Z〈u〉(wg) = 1, so [〈u〉 : Z〈u〉(wg) ] = ∞, contradicting (6.1).
On the other hand, if ms,τ(s) < ∞ for all s ∈ I, then the Coxeter group WI

τ

is infinite and irreducible by Theorem 5.2 (1). Now we have

ZWI
τ (π(w)) = ZWI

τ (w) = ZWI
τ (wg),
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which has finite index in WI
τ by (6.1). Thus the non-identity involution

π(w) ∈ WI
τ is almost central in WI

τ , contradicting Proposition 2.15. Hence
Step 2 is concluded.

Step 3: w ∈ Wfin.

We show that π(w) = 1 for any WI ∈ Cinf
W with projection π : W ։ WI .

Since ρg is identity on WI (Step 2), we have ZWI
(wg) = ZWI

(w) = ZWI
(π(w))

and so (by (6.1)) π(w) is almost central in WI . Now since 1 = π(wρg(w)) =
π(w)ρg(π(w)) = π(w)2, the claim follows from Proposition 2.15.

Step 4: w ∈ W (Oρ).

Assume the contrary. Then there exist a ρ†(G)-orbit O ⊆ Cfin
W with infinite

cardinality and WI ∈ O (with projection πI : W ։ WI) such that πI(w) 6= 1.
Fix the O, and let O0 be the set of all such WI ∈ O, so |O0| < ∞.

We show that ρ†
h(O0) = O0, or equivalently ρ†

h(O0) ⊆ ρ†
h(O0), for any

h ∈ ZG(wg). Note that ρh(w) = w since wgh = hwg = ρh(w)hg. Now if
WI ∈ O0 and ρ†

h(WI) = WJ 6∈ O0, then πJ(ρh(w)) = ρh(πI(w)) 6= 1 and

πJ (w) = 1, contradicting ρh(w) = w. Thus ρ†
h(O0) ⊆ O0 as desired.

Since O is an infinite ρ†(G)-orbit, we can choose infinitely many finite
subsets O1,O2, . . . of O, irreducible components WI0 , WI1, WI2, · · · ∈ O and
elements g0, g1, g2, · · · ∈ G inductively, where we start with arbitrary WI0 ∈
O0 and g0 = 1, subject to the conditions WIk

6∈ ⋃k−1
i=0 Oi, ρ†

gk
(WI0) = WIk

and Ok = ρ†
gk

(O0) ∋ WIk
for all k ≥ 1. Now if i < j and h ∈ ZG(wg), then

the previous paragraph implies that ρ†
gih

(WI0) = ρ†
gi
ρ†

h(WI0) ∈ ρ†
gi
(O0) = Oi,

while ρ†
gj

(WI0) = WIj
6∈ Oi, so we have gj 6= gih. Thus all the gi belong

to distinct cosets in G/ZG(wg), while [G : ZG(wg)] < ∞ by (6.1). This
contradiction yields the claim.

Step 5: g ∈ Gρ ∪ {1}.
Note that g2 = 1. Since hwg = ρh(w) · hg for h ∈ G, we have ZG(wg) ⊆

ZG(g) and so g is almost central in G by (6.1). From now, we check (3.1).
By Step 4, the union O of a finite number of some ρ†(G)-orbits with finite

cardinalities satisfies that w ∈ W (O). Since |O| < ∞, it suffices to show
that ρg is identity on all WI ∈ O′ = CW r O except a finite number of finite
irreducible components. Now O′ is ρ†

g-invariant as well as its complement
O, while W (O′) ⊆ ZW (w), so ZW (O′)(wg) = ZW (O′)(g) is the fixed-point
subgroup W (O′)τ (where τ = ρg|W (O′)). Since ZW (O′)(wg) has finite index in
W (O′) by (6.1), the claim follows from Theorem 5.1.

Hence the “only if” part has been proved. From now, we prove the other
part; so we assume that w ∈ W (Oρ), g ∈ Gρ ∪ {1} and wg is an involution,
and prove that wg is almost central in W ⋊ G. By the choice of w, there are
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a finite number of finite ρ†(G)-orbits in Cfin
W such that their union O satisfies

that w ∈ W (O). Now note that

ZW⋊G(wg) ⊇ ZW⋊G(w) ∩ ZW⋊G(g) ⊇ (ZW (w)ZG(w)) ∩ (ZW (g)ZG(g)),

so it suffices to show that both ZW (w)ZG(w) and ZW (g)ZG(g) have finite
index in W ⋊ G (see (2.3)). Moreover, Lemma 2.4 reduces the claim to the
following four claims:

Step 6: ZW (w) has finite index in W .

This follows since w lies in the finite direct factor W (O) of W .

Step 7: ZG(w) has finite index in G.

Since W (O) is finite and ρ(G)-invariant, the action gives rise to a homo-
morphism ρ′ from G to the finite group Aut W (O). Now ker ρ′ is contained
in ZG(w) (since w ∈ W (O)) and has finite index in G, proving the claim.

Step 8: ZW (g) has finite index in W .

This is trivial if g = 1. If g ∈ Gρ, then the property (3.1) and Theorem
5.1 imply that the fixed-point subgroup W ρg = ZW (g) by ρg has finite index
in W , as desired.

Step 9: ZG(g) has finite index in G.

This is obvious from the choice of g.

Hence the proof of Theorem 3.1 is concluded.
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[11] B. Mühlherr, Coxeter groups in Coxeter groups, in: Finite Geometry and
Combinatorics, London Math. Soc. Lecture Note Ser. 191, Cambridge
Univ. Press, Cambridge, 1993, pp. 277–287.

[12] M. Nanba, Bruhat order on the fixed-point subgroup by a Coxeter graph
automorphism, J. Algebra 285 (2005) 470–480.

[13] K. Nuida, Centralizers of reflections and reflection-independence of Cox-
eter groups, preprint.

[14] K. Nuida, On centralizers of parabolic subgroups in Coxeter groups,
arXiv:math.GR/0501061.

[15] K. Nuida, On the direct indecomposability of infinite irreducible Coxeter
groups and the Isomorphism Problem of Coxeter groups, to appear in
Communications in Algebra, arXiv:math.GR/0501276.

[16] L. Paris, Irreducible Coxeter groups, arXiv:math.GR/0412214.

[17] R. W. Richardson, Conjugacy classes of involutions in Coxeter groups,
Bull. Austral. Math. Soc. 26 (1982) 1–15.

[18] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer.
Math. Soc., vol. 80, 1968.

Koji Nuida
Graduate School of Mathematical Sciences, University of Tokyo

3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
E-mail: nuida@ms.u-tokyo.ac.jp

32

http://arxiv.org/abs/math/0501061
http://arxiv.org/abs/math/0501276
http://arxiv.org/abs/math/0412214

	Introduction
	Preliminaries
	On abstract groups
	Coxeter groups
	Definitions
	Geometric representation and root systems
	Finite, affine and hyperbolic Coxeter groups
	On centralizers and normalizers in Coxeter groups


	The main theorem and its applications
	Main theorem
	Examples
	Application to the isomorphism problem of Coxeter groups
	Preliminaries on centralizers and normalizers
	The results


	Essential elements and Coxeter elements
	On the fixed-point subgroups by Coxeter graph automorphisms
	Proof of Theorem ??
	Proof of Theorem ??

	Proof of the main theorem

